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We study patient admission policies in a neurology ward where there are multiple types of patients with

different medical characteristics. Patients receive specialized care inside the neurology ward and delays in

admission to the ward will have negative impact on their health status. The level of this impact varies

among patient types and depends on the severity of patients. Patients are also different in terms of arrival

rate and length of stay at the ward. The patients normally wait in emergency department until a ward bed

is assigned to them. We formulate this problem as an infinite-horizon average cost dynamic program and

propose an efficient approximation scheme to solve large-scale problem instances. The computational results

from applying our model to a neurology ward show that dynamic policies generated by our approach can

reduce the overall deterioration in patients’ health status compared to several alternative policies.
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1. Introduction

Neurological diseases, including Alzheimer, Amyotrophic lateral sclerosis (ALS), Multiple Scle-

rosis, Spinal Cord Injury and Stroke, represent leading causes of death and disability in the

Canadian and US populations (World Health Organization, 2006). Many neurological condi-

tions are chronic, worsen over time and produce a range of functional limitations posing daily

challenges to the patients and their caregivers. For example, Heart and Stroke Foundation

(www.heartandstroke.com) identifies stroke as the third leading cause of death in Canada with

about 14,000 fatalities each year; and reports that about 300,000 Canadians are living with the
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effects of stroke. The Global Burden of Disease study conducted in 2002 by the World Health Orga-

nization also determined that neurological conditions accounted for 38.3% of the disability-adjusted

life years worldwide (Lopez et al., 2006), while the percentages observed in developed countries are

much higher than the global average. The neurological conditions also have an economic burden.

The incidence of most neurological diseases increases with age, and this is a particular concern for

healthcare providers and policy makers in an era of aging population. The latest estimate by the

Canadian Institute for Health Information (www.cihi.ca) pertaining to the total cost of neuro-

logical illnesses in Canada is $185 billion annually, 55% of which is direct cost. With respect to

utilization of hospital-based services, around 10% of acute care hospitalizations and 20% of patient

days in acute care hospitals on average include patients with one of the neurological conditions,

including the secondary diagnosis.

Very few neurological conditions are fully curable. In the event of an acute episode, the neurol-

ogy patients are admitted to the hospital through the emergency departments (EDs). Diagnosis of

such conditions in ED requires extensive physical examinations, brain imaging (CT or MRI) and

other diagnostic tests. Following these diagnostic tests, the hospital admission decision is made

by a neurologist. Recent studies have shown that such critically ill patients are more effectively

treated in specialized inpatient settings, i.e., neurology wards, offering properly organized care

(Chalfin et al., 2007, Collaboration, 2013). The features of a neurology ward include the care given

by a specialized nursing team, the use of extensively equipped beds, the availability of occupa-

tional, speech and physical therapies as well as social workers (Stroke Unit Trialists’ Collaboration,

2007). As a result some patients’ quality-adjusted life years can be improved significantly through

enhanced functional abilities. The accessibility to such specialized care is particularly time-sensitive

for patients with acute conditions (Castillo, 1999). Indeed, Kucukyazici et al. (2010) observed that

the potential benefits of specialized care might be offset by long delays in ED prior to admission

to a neurology ward. To avoid such situations the neurologist may find it necessary to transfer

patients to another hospital. This is a decision neurology ward managers strive to avoid since the

patient faces additional waiting time at the transfer destination.

Many neurology wards face the problem of insufficient capacity to meet demand for inpatient

beds, especially during demand surges. The problem is pronounced since admitting these patients to

other wards is not an option, i.e., off-unit servicing is not feasible for these patients. Note that the

capacity for patient care is determined not only by the number of beds in the neurology ward but

also by the team of specialized nurses, physicians, and allied health professionals. The patient-to-

specialized nurse and patient-to-neurologist ratios are key performance measures of quality of care.

Moreover, the beds in these wards are specially equipped neurology beds and substitution of these

beds by admitting those patients to other wards often has a negative impact on health outcomes.
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In many neurology wards, a static patient admission policy is used by assigning a fixed number

of beds to each type of disease. Sometimes, a certain number of beds are used as flexible beds

and shared among different types of patients. For example, at the Montreal Neurological Hospital,

there are sixteen beds in the neurology ward, where six beds are dedicated to stroke patients, six

beds are dedicated to non-stroke neurology patients and four of them are used as flexible beds to

admit either stroke or non-stroke patients.

In this paper, we focus on patient admissions from the ED that involve the development of rules

for the allocation of inpatient beds among multiple types of patients as well as the patient transfers.

In designing such admission policies, the physicians face the trade-off between (i) the higher risk of

deteriorated functionality due to extended ED stays for more severe patients and (ii) the increased

risk of blocking due to longer length of stays of these patients. An additional trade-off is between

the benefits of reducing the ED boarding time by transferring the patient to another hospital

and the inconvenience associated with the transfer. To address these trade-offs, we formulate an

infinite-horizon average cost dynamic program (DP) and propose an efficient approximation scheme

to solve large-scale problem instances. Our objective is to minimize the average opportunity cost

of waiting and transferring by finding the most appropriate patient admission policy from the ED.

To the best of our knowledge, this is the first paper that makes an explicit effort to model

the differentiating features of neurology wards, and hence provides managerial insights specific to

this domain. Our contributions are three-fold. First, from a modeling perspective, we recognize

the significance of the presence of a specialized team of care providers in neurology wards, which

renders off-servicing policies infeasible for neurology patients. In dealing with the hard capacity

constraints, we incorporate the possibility of patient transfers to other hospitals that are not well

studied in the prevailing literature. Second, from the viewpoint of methodology, we develop an LP-

based approximate dynamic programming (ADP) approach. While this method typically involves

a large-scale LP (e.g., de Farias and Van Roy (2006)), our approach involves solving a number

of small DPs that are derived by employing a non-linear functional approximation. We tackle the

subsequent complexity by a novel decomposition that results in smaller DPs. We also develop an

ADP-based Priority Cut-off policy that not only performs well by incorporating the state of the

system in making the patient admission decisions, but also is easy to implement. Lastly, on the

managerial side, we highlight the weaknesses of the static patient admission and ad-hoc patient

transfer policies that are currently popular. In particular, we show that by incorporating the current

utilization of the ward and the nature of the waiting line, it is possible to achieve lower costs and

better trade-offs between waiting times and patient transfers.

The remainder of the paper is organized as follows: We provide an overview of the most relevant

literature in Section 2. The DP formulation is provided in Section 3, whereas we provide an overview
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of the data set from Montreal Neurological Hospital as well as the methods used for estimating

the model parameters in Section 4. The properties of the optimal policy are discussed in Section 5.

In Section 6, the solution methodology is presented. Section 7 provides some numerical examples

to compare the policies obtained through ADP approach to other admission policies. We provide

some concluding remarks in Section 8.

2. Literature Review

The patient admission problem has received attention in the academic literature for more than four

decades. Among the first studies, Kolesar (1970) develops a Markovian model that incorporates the

scheduling of outpatients as well as the admission of inpatients that need immediate hospitalization.

Esogbue and Singh (1976) considers the admission problem for two types of patients with the

following objectives: maximization of occupancy and minimization of unsatisfied requests. They

develop a birth and death process based on a priority cut-off policy and solve for the optimal value

of cut-off priority.

Lapierre et al. (1999) develops a time-series model based on hourly census data that assists

with the allocation of beds between different medical units within a hospital. Using this model,

hospital administrators can decide how many beds should be allocated to each unit to have the

same number of bed shortage occurrences across the units. Li et al. (2008) presents an integrated

model of queueing and goal programming (GP) that is illustrated through allocation of beds across

the departments of a hospital in China. A queueing model is used to compute certain performance

measures of the system, for example, patient admission probability. The GP methodology is used

to construct a multi-objective decision model taking into account the targets and objectives of

hospital management and department heads.

The recent paper of Ayvaz and Huh (2010) that studies allocation of hospital capacities among

different types of patients shares some features with our work. They consider two types of patients:

type-1 patients who arrive at the system and wait until they are served and type-2 patients who

leave the system if they are not immediately accommodated (i.e., balking patients). They assume

that each patient requests only one unit of capacity and whenever she is admitted, she stays only

until the end of that day irrespective of time of admission. This means that at the beginning of

each day, all the capacity becomes available. A discounted total cost dynamic program is developed

to find the optimal number of admissions per day. To solve the model, they propose a heuristic

policy that protects some portion of capacity for type-2 patients. Helm et al. (2011) incorporates

the existence of an expedited patient queue which includes those patients that need to be seen

within a few days. They optimize the admission threshold policy by formulating the problem as a

Markov decision process (MDP).
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From a methodological perspective, the papers that use approximate dynamic programming for

patient scheduling and admission problems are relevant to our work. Green et al. (2006) considers

capacity allocation of a diagnostic medical facility among different types of patients. They develop

a finite-horizon DP which is approximated using linear value functions and a heuristic policy is

generated based on this linear approximation. Patrick et al. (2008) formulates advance scheduling

of patients with multiple priorities for a diagnostic facility as a discounted infinite-horizon MDP. By

considering an affine value function approximation, they produce an approximate linear program

(ALP), which is solved by applying column generation technique on its dual problem. Using the

solution of the ALP, they develop a booking policy and present the optimality gaps. The same

approach is used by Sauré et al. (2012) to schedule cancer patients for radiation therapy sessions.

These types of patients require more than one appointment over the planning horizon while Patrick

et al. (2008) assumes each patient requires only one appointment.

There is a large number of papers in other areas such as production planning and scheduling,

revenue management and communication networks that were pertinent to our work. Carr and

Duenyas (2000), De Vericourt et al. (2002) and Paschalidis and Tsitsiklis (2000) are good examples

of such papers with relevant modeling and methodological components. In the interest of space,

our review is confined to the healthcare domain. Before we turn to the model statement, it is

important to highlight the differentiating characteristics of our work. First, all types of patients

can wait for service as long as there is space available in the waiting area (i.e., ED). Second, we

incorporate the decision about transferring the patients to another hospital. Third, we also consider

the different LOSs associated with different patient types. The resulting decision is rather complex

from the analytical viewpoint. Hence, we combine queueing methods and approximate dynamic

programming (ADP) in devising an integrated solution procedure.

3. The Dynamic Programming Formulation

We consider the problem of admitting patients with different clinical conditions into a neurology

ward. There are n types of patients indexed by i∈ {1, . . . , n} where type 1 is the least severe patient

and type n is the most severe patient. There are B beds available in the ward. We assume that

the beds are multi-purpose, i.e., each bed can be used for admitting the patient irrespective of

her neurological condition. Patients usually wait in the ED before a bed in the ward is assigned

to them. It is generally undesirable to keep neurology patients in the ED due to the lack of the

special care needed by this group of patients. The health status of a patient with severe condition

deteriorates much faster than one with a non-severe condition, in response to delays in admission

to the ward. Assuming that dis-utilities associated with such delays can be expressed in quality of
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life related terms, let π = (π1, π2, . . . , πn)T denote the waiting cost vector, where πi is the waiting

cost per unit time for a patient of type i. Note that πi ≤ πj for i < j.

We assume type-i patients arrive according to a Poisson process with the rate of λi patients

per unit time. Upon the arrival of a new patient, the ward manager decides whether to accept or

transfer the patient to another hospital. Transferring a type-i patient to another hospital incurs a

lump–sum cost, denoted by κi. Let κ = (κ1, κ2, . . . , κn)T be the transfer cost vector. If the patient

is accepted, she is either given a bed or joins the queue and waits until a bed becomes available

for her. Whenever a type-i patient is admitted to a bed, we assume she occupies the bed for

a time which is exponentially distributed with mean of µ−1
i (which is also called average LOS).

Consequently, µi indicates the discharge rate for patients of type i. For patients with the same

disease, the average LOS for more severe patients tends to be longer. We assume that arrivals and

discharges occur independently from each other. When a patient is discharged, a decision is made

on whether to admit a patient from the queue to the ward. The decision-making process should

be based on the number of waiting patients from each type and also the number of empty beds

available.

To find the best admission policy, we formulate the problem as a continuous-time dynamic

program. This enables us to limit our attention only to those times when there is a change in the

state of the system (Puterman, 1994). The change in the state of the system can be either an arrival

of a patient or a discharge of a patient from the ward. The time horizon is considered to be infinite

which is consistent with the idea of running a hospital ward. This problem can be formulated

either as a total discounted cost or an average cost model. While the total discounted approach

seems easier to apply, the dependency of the optimal policy on the discount factor and initial state

is a major drawback. Thus, we use an average cost dynamic program, where the objective is to

minimize the long-run average cost of the system.

3.1 State Variables

The state of the system includes information about the number of waiting patients and the number

of occupied beds by each patient type. We need to distinguish between the beds occupied by

different patient types because the discharge rates are not the same for different types. Let x =

(x1, x2, . . . , xn)T, where xi is the number of waiting type-i patients, and b = (b1, b2, . . . , bn)T, where

bi is the number of beds occupied by type-i patients. The state of the system is given by (x,b). Note

that x and b are n-dimensional column vectors. We assume the total number of waiting neurology

patients is constrained by K, which reflects the hospital’s policy with regards to the quality of care.

Due to time sensitivity for stabilizing neurology patients as soon as possible, hospitals prefer not to

have these patients boarding at the ED for extended period of time. Hence, we have
∑n

i=1 xi ≤K.
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At any time, at most B patients are in the beds, i.e.,
∑n

i=1 bi ≤B. So the state space is finite. We

use post-action state variables so that the transition rate depends only on the state of the system

but not on the actions.

3.2 Actions

Since we model the problem as a continuous time dynamic program, the moments that we make a

decision are restricted to those times that the state of the system changes (Puterman, 1994). We

classify the possible actions based on the cause of state changes.

In the case of an arrival, the possible actions are:

• letting the patient join the queue;

• admitting the patient to the ward; and

• transferring the patient to another hospital.

The first option is not feasible if the number of waiting patients has reached its maximum

capacity (K). The second option is feasible only if there is at least one bed available in the ward.

The last option is always available.

Given state (x,b), the set of admissible actions in the case of a type-i arrival is

Ui(x,b) =

{
(ai, ti)∈ {0,1}2

∣∣∣∣ai ≤ I

{
n∑
j=1

bj <B

}
, I

{
n∑
j=1

xj =K

}
≤ ai + ti ≤ 1

}
, (1)

where I{·} is the indicator function; i.e., it is equal to 1 if its condition is true and is equal to

0 otherwise. The variable ai is a 0-1 variable that represents the admission of a type-i arrival

or equivalently, a type-i patient from the queue. An admission can occur only when there is at

least one empty bed. The constraint ai ≤ I
{∑n

j=1 bj <B
}

takes care of this issue. The variable

ti is also a 0-1 variable that indicates the decision related to transferring the new arrival. In the

situation that the waiting area is full, we must either admit or transfer a patient. The constraint

I
{∑n

j=1 xj =K
}
≤ ai + ti ≤ 1 takes into account this requirement when choosing an action. When

(ai, ti) = (0,0), the patient simply joins the queue and waits until admission to the ward.

In the case of a discharge, the possible actions are:

• doing nothing; and

• admitting one patient from the queue.

When a type-i patient is discharged, the set of feasible actions is

Di(x) =

{
(di1, . . . , din)∈ {0,1}n

∣∣∣∣dij ≤ xj,∀j; n∑
j=1

dij ≤ 1

}
. (2)

The variable dij is a 0-1 variable where dij = 1 represents the admission of a type-j patient when

a type-i patient is discharged. Clearly, this can happen only when there is at least one waiting
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patient of type j in the queue. The constraint dij ≤ xj forces dij to the value 0 when there is no

waiting patient of type j. The constraint
∑n

j=1 dij ≤ 1 states that we can admit at most one patient

from all types. When all dij are zeros, it refers to choosing not to admit any patient.

3.3 Transition Probabilities

Let T denote the random time between two decision points. To find the distribution of T , we use

Lemma 1 in EC.1. Based on the theorem in Porteus (2002), Lemma 1 establishes that the time to

the next transition is exponentially distributed when all the events follow Poisson processes. The

rate of the distribution is the sum of all rates; ν(x,b) =
∑n

i=1(λi + biµi). Also, when a transition

has already happened at time t, the probability that the transition is caused by a specific event

is the rate of that event divided by the sum of all rates. This probability is independent of the

time that has passed. Since the state of the system changes over time, the transition rate in each

period is not constant. To transform the system into a Markov chain with uniform transition rate,

we apply the uniformization technique.

To use the uniformization technique, we note that an upper bound for the transition rate is

νmax =
∑

i λi+Bµmax where µmax = maxi µi. So the new transition probabilities are given as follows

(Bertsekas, 2005):

Transition Probability =


λi

νmax , if there is an arrival of type i,

biµi
νmax , if there is a discharge of type i,

1−
∑n
i=1(λi+biµi)

νmax , if there is no change in state.

Now we can scale time such that the maximum transition rate (νmax) is normalized to 1. To do

so, we just need to define the new arrival and service rates: λi
′
= λi

νmax and µi
′
= µi

νmax , for all i.

Then the new transition probabilities are

(Normalized) Transition Probability =


λi
′
, if there is an arrival of type i,

biµi
′
, if there is a discharge of type i,

1−
∑n

i=1(λi
′
+ biµi

′
), if there is no change in state.

Accordingly, the waiting cost of type-i patients per each normalized time interval is πi
′
= πi

νmax .

For notational simplicity, let λi, µi and π denote the normalized parameters in the remainder of

the paper.

3.4 The Bellman Optimality Equation

The Bellman equation of our dynamic program is given by

(DP) h(x,b) =πTx− ρ∗+
n∑
i=1

λi min
ai∈Ui(x,b)

{κiti +h(x + (1− ai− ti)ei,b + aiei)}
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+
n∑
i=1

biµi min
di∈Di(x)

{h(x−di,b− ei + di)}

+

(
1−

n∑
i=1

λi−
n∑
i=1

biµi

)
h(x,b), ∀x,b,

where Ui(x,b) and Di(x) are given by (1) and (2) respectively and ei in an n−dimensional

identity column vector.

In (DP), ρ∗ is the optimal average cost per normalized time period and h(x,b) is the bias

function which represents the total difference from optimal average cost over all periods if we start

from state (x,b). The term πTx− ρ∗ is the difference between the waiting cost of this period and

the optimal average cost. The second (third) term refers to the case when a type-i patient arrives

(discharges). The last term is associated with the case of no change in the state. This term has been

added due to the uniformization. In our model, all the states can be reached from other states,

i.e., Weak Accessibility holds (Bertsekas, 2005). Thus, the optimal average cost is independent of

the initial state of the system.

4. The Data

In order to demonstrate the applicability of the proposed DP formulation and to garner managerial

insights, we developed a full data set representing the patient flows through the 3-South neurology

ward of Montreal Neurological Hospital (MNH). As mentioned before, the MNH neurology ward has

sixteen inpatient beds. In an effort to focus on the care provided to stroke patients, we categorize the

patients into four patient types: mild non-stroke, mild stroke, severe non-stroke, and severe stroke.

Note that these patients arrive at the MNH through the ED and are kept boarding there until a

bed becomes available at the ward. Our data set includes all patients treated in the neurology ward

for three full fiscal years. We rely on three sources of data: the hospital’s ED information system,

the patient registry of McGill University Health Center, and the paper-based patient charts of the

stroke and non-stoke patients admitted to the 3-South neurology ward of MNH.

In this section, we elaborate on the assumptions that we have made about the arrival and LOS

distributions and verify them using the available data. Furthermore, we explain how the waiting

costs in the model can be estimated in the form of health related quality of life (HRQoL) (Xie

et al., 2006). We close the section by also describing how we estimate the cost associated with

patient transfer, again in terms of HRQoL.

4.1 Analysis of Patient Arrivals

The patient inter-arrival times to the system are random and dependent on the type of the patient.

We hypothesize Poisson distributions for the patient arrivals. The histograms of the number of
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arrivals per day for each patient type based on three full years of actual data support this assump-

tion. We test our hypothesis that the arrival process for each patient type follows a Poisson distri-

bution using the χ2 goodness-of-fitness test with bin size of one. The results are presented in Table

1, based on which we can conclude that Poisson distribution fits reasonably well to our data for

each patient type. The goodness-of-fit χ2 tests are found not statistically significant for all types,

i.e., all p-values are >0.05.

Patient Type Sample Mean Number of χ2-test

Size Arrivals per Day p-value

Mild Non-Stroke 259 0.236 0.097

Mild Stroke 289 0.262 0.165

Severe Non-Stroke 151 0.139 0.395

Severe Stroke 123 0.113 0.401

Table 1 χ2 goodness-of-fitness tests for patient arrival process.

Hourly, daily, and monthly variations can play critical roles in modeling the arrival processes.

To check whether the arrival rates in our problem vary with time of the day, day of the week,

or month of the year we run Poisson regression analysis, using STATA 13, given that our data

fits well to Poisson distribution. The Poisson regression model for each patient type uses 4380

points corresponding to the 6-hour time intervals in the three years from which the data has been

collected. The relatively small arrival rates in our problem can result in many intervals with zero

arriving patient. Also, the variance of arrival process tends be larger than the mean in this case.

Therefore, we also conduct zero-inflated Poisson regression analysis. Comparing the zero-inflated

Poisson regression models to the Poisson regression models using Vuong Non-Nested Hypothesis

Test produces p-values of 0.099, 0.069, 0.240, and 0.178 for mild non-stroke, mild stroke, severe

non-stroke, and severe stroke patients respectively. These p-values suggest that the zero-inflated

Poisson regression models do not provide a significant improvement over the standard Poisson

regression models. To confirm this, we also perform a log-likelihood ratio test to examine whether

the zero-inflation component is in fact necessary. The results from this test present p-values greater

than 0.05 for all patient types, which support the fact that the zero-inflated Poisson models are

not significantly better than the Poisson models without zero-inflation component.

The results of the Poisson regression models, which are summarized in Tables 6–9 in EC.2,

suggest that the number of arrivals do not vary with the time of the day, the day of the week, or
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the month of the year for all patient types, given that all the p-values of corresponding categories

of the variables are greater than 0.05. Our findings through zero-inflated Poisson regression models

also report similar results, i.e. all p-values are greater than 0.05. In a further analysis, we define a

binary variable of the weekend day instead of the day of the week variable and a variable of the

season, which takes on values of fall (reference value), winter, spring and summer instead of the

month of the year variable. The results of this analysis also confirm that the rates of arrivals do

not vary either with the weekday/weekend or the season.

4.2 Analysis of Patient LOSs

The patient departures from the hospital during a given time period are random and dependent on

the patient type. We hypothesize exponential service times for the LOS of patients. The histograms

of LOS of each patient type support this assumption. We test our hypothesis that the LOS of

each patient type follows an exponential distribution using Anderson-Darling goodness-of-fitness

test. The Anderson-Darling statistic is not dependent on how the data is binned and does not

require a sufficient sample size, which provides a more flexible method for our analysis. Using

Minitab 17, we examine (i) if the data is from a population with exponential distribution and

(ii) how well the data fits to other distributions such as lognormal, Weibull and Gamma. Table 2

summarizes the results from Anderson-Darling goodness-of-fitness test. Note that in fitting Weibull

and Gamma distributions to our data we exclude the exponential distribution as a special form of

these distributions.

Patient Type Sample Mean Exponential Weibull Gamma Lognormal

Size AD p-value AD p-value AD p-value AD p-value

Mild Non-Stroke 259 13.003 1.129 0.084 1.062 <0.01 1.158 0.007 2.296 <0.005

Mild Stroke 289 11.491 1.229 0.064 1.328 <0.01 1.449 < 0.005 2.438 < 0.005

Severe Non-Stroke 151 19.011 0.716 0.263 0.744 0.05 0.794 0.048 0.810 0.035

Severe Stroke 123 22.002 0.428 0.589 0.421 >0.250 0.433 > 0.250 1.760 < 0.005

Table 2 Anderson-Darling (AD) goodness-of-fitness tests for LOS distributions.

Since a low p-value (<0.05) indicates that the LOSs do not follow that distribution, exponential

distribution is the only one that fits to the data for mild stroke and non-stroke patients. For severe

non-stroke patients, the data fits both to the exponential and Weibull distributions. However,

given the lower AD and the higher p-value we choose the exponential distribution as the best fit.

For severe stroke patients, although the lowest AD is for Weibull distribution, the AD values for
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exponential, Gamma and Weibull are in the same range and results show a p-value higher than

0.05 for exponential distribution. Therefore, we conclude that exponential distribution also fits

very well the LOS of severe stroke patients.

4.3 Patients Waiting and Transfer Costs

Waiting Cost: As mentioned earlier, the patients boarding in the ED for a bed in the neurology

ward suffer from lack of specialized care and their health status deteriorates as a consequence of

staying in the ED. This deterioration emerges as worse functionality of the patients, which is one

of the most important health outcomes of the neurological patients. For those patients, discharge

destination can be used as a proxy of patient’s functionality at the time of discharge. In this context,

Kucukyazici et al. (2010) have found that longer ED boarding time is strongly associated with

increased probability of not being able to discharge to home, i.e., being admitted to rehabilitation

center or long term care facility. To be more specific, they observed that 10% increase in the ED

LOS is associated with 7.7% increase in the risk of being discharged to either a rehabilitation center

or a long term care facility, i.e., not being able to go home. It is established that the discharge

destination has a significant impact on both short-term and long-term HRQoL (Xie et al., 2006).

Thus, we estimate the patient’s waiting cost as the expected HRQoL lost resulting from not being

able to go home due to the ED boarding.

Let βi denote the percent increase in the probability of not being discharged home for type-i

patients, as a result of one time unit of boarding in the ED. We estimate the patient type specific

βi utilizing a regression model controlled for all other clinical and demographic factors. Let sR
i and

sL
i denote the conditional probabilities of being sent to a rehabilitation center and a long term care

facility respectively given that the type-i patient is not discharged to home. Note that sR
i + sL

i = 1.

Moreover, we define the HRQoL values associated with discharge destination as QH, QR, and QL

for home, rehabilitation center and long term care facility, respectively. There are several studies

in the literature that report the HRQoL measures for neurological patients including Hopman and

Verner (2003), Jaracz and Kozubski (2003), Jönsson et al. (2005), and Nichols-Larsen et al. (2005).

In our model, we use the short-term HRQoL measures estimated by Nichols-Larsen et al. (2005).

Therefore, we define the waiting cost per unit time for type-i patient, πi, to be the expected loss

in quality of health outcomes as a consequence of one unit time increase in the ED boarding time:

πi = βipi(QH− (sR
i QR + sL

i QL)) (3)

where pi corresponds to the average probability of discharge to rehabilitation center and long term

care facility of patient type-i for the group of patients who do not experience any delay in the ED.
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Index (i) Patient Type Daily Waiting Cost (πi)

1 Mild Non-Stroke 70

2 Mild Stroke 90

3 Severe Non-Stroke 145

4 Severe Stroke 295

Table 3 Estimated patients’ waiting cost in the ED per day

Using Equation (3), the waiting cost per day for each patient type is estimated and presented in

Table 3.

Transfer Cost: The existing clinical guidelines used at the MNH recommend to transfer the

patients to another hospital if their waiting time in the ED exceeds 48 hours. This means that the

ward manager is willing to keep the patients in the ED for two days and if no bed becomes available

in that period the patient is transferred to another hospital, where the patient is presumably

admitted to the ward without any delay. Kucukyazici (2010) studies the process of patient transfer

to other hospital by means of a comprehensive simulation model of MNH ED, Neuro-ICU, and

neurology ward. Her results clearly demonstrate that the current practice of waiting for 48 hours of

ED boarding until a transfer decision is made, is not the best policy. Thus, the model proposed in

this paper assumes that the transfer decision are made at the time of patient arrival based on the

overall congestion of the system. Consequently, if we decide to transfer the patient, the maximum

transfer cost is considered to be equivalent to two days of waiting in the current hospital’s ED. In

general, if the threshold for transferring type-i patients in a hospital is di time units and πi is the

ED waiting cost per unit time, then the transfer cost for type-i patient is estimated as κi = diπi.

5. Properties of the Optimal Policy: A Numerical Illustration

Before moving on to subsequent sections on approximation methods, we numerically explore the

structure of the optimal admission policy by solving a large number of problem instances. By

reporting the results from several revealing problem instances, we illustrate that the form of the

optimal policy is not straightforward. The complexity of the problem stems from the fact that the

optimal policy depends not only on how many beds are occupied, but also the number of beds

occupied by each patient type, as well as the number of patients of each type waiting for a bed.

It can be verified that the optimal policy is robust with respect to the magnitude of waiting and

transfer costs and is affected only by their ratio.

We consider problem instances with two types of patients, mild stroke (referred to as type 1)

and severe stroke (referred to as type 2). The arrival rates and average LOS for these two types

are reported in Tables 1 and 2. Throughout this section, we assume the number of beds B and the
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waiting room capacity K are both 8. We organize our illustrative examples into two subsections

corresponding to the arrival and the discharge of a stroke patient, respectively.

5.1 Arrival of a Stroke Patient

Illustrative Example I: Let the waiting costs be π = (90,295) and transfer costs κ= 2π. Suppose

there is no severe stroke patient in the system; i.e., x2 = 0 and b2 = 0. When there is a new arrival

of a mild stroke patient in the system, the optimal decision is to admit the new arrival to the ward

if there is an available bed and transfer the patient otherwise. This implies that the last available

bed is not reserved for a severe patient that may arrive in the future. However, if the waiting cost

of severe stroke patients increases, the form of the optimal policy changes. In particular, when

we increase π2 to 450, the optimal policy is to reserve the last available bed for severe patients if

the number of mild stroke patient waiting is no more than 5 (x1 ≤ 5). This example shows that a

universal preference ordering between the two patient types does not exist.

Illustrative Example II: The condition x1 ≤ 5 in Example I implies a threshold policy to

manage the last available bed. Denote the threshold on the number of mild patients waiting for a

bed by γ, which equals 5 in Example I. In this example, we investigate the impact of the number

of different patient types in the ward on γ. To this end, we consider situations where there is only

one bed available (i.e., b1 + b2 =B− 1) and conduct a parametric analysis on the number of beds

occupied by mild patients (b1). We take π = (90,450) and fix x2 = 0. Figure 1 shows the optimal

policy in the case of an arrival of mild stroke patient. When b1 ≤ 2, we reserve the last available

bed for a severe patient if x1 ≤ 3 (γ = 3) and allocate that bed to the arriving mild stroke patient

otherwise. This threshold increases by one (i.e., γ = 4) when 3≤ b1 ≤ 4, and increases by two (i.e.,

γ = 5) when 5 ≤ b1 ≤ 7. It is important to note that the states where x1 > 0 are transient, since

waiting mild patients are either transferred or admitted to beds. It is also interesting to observe that

when there are less than four mild stroke patients waiting (as an initial state), the newly arriving

mild stroke patients will be transferred regardless of the value of b1. This example illustrates that

the threshold on x1 to manage the last available bed depends on the composition of patients that

are already admitted.

Illustrative Example III: Here we consider a set of recurrent states in which x1 = x2 = 0.

Let e be the number of empty beds. For all values of e, the optimal policy in the event of a mild

patient arrival is shown in Figure 2. The cost parameters are the same as in Example II except

that π2 = 325. The optimal policy is to admit the arriving mild patient to the bed as long as more

than two beds are available. If no bed is available, the patient is transferred. However, if only one

bed is available, the admission policy depends on the patient mix in the ward. In particular, the

arriving mild patient is admitted to the ward only if the number of beds occupied by mild patients
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Figure 1 Optimal decision if a mild stroke patient arrives while x2 = 0 and b1 + b2 = 7

× = Transfer (Reservation) � = Admit mild stroke patient to bed

(b1) is greater than or equal to three. Therefore, in this case, the mild patient is admitted when

more beds are already occupied by mild patients in the ward.

Figure 2 Optimal decision if a mild stroke patient arrives while x1 = x2 = 0, b1 + b2 =B− e

× = Transfer (Reservation) � = Admit mild stroke patient to bed

Illustrative Example IV: Now we consider the arrival of a severe stroke patient to the system.

Similar to illustrative example II, we examine the optimal policy when b1 + b2 =B− 1 and x2 = 0.

When π = (90,295), the optimal policy recommends that the newly arrived severe patient be

admitted to the ward. However, when we decrease the waiting cost of severe patients from 295 to

135, it is optimal to transfer the arriving severe patients when x1 =K−1 and b1 ≤ 1 or x1 =K and

b1 ≤ 3. This implies that the severe patients do not always get prioritized over the mild patients.

Intuitively, when the system is highly congested and the chance of a discharge is low in the near
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future, it is better to use the available beds to serve the mild patients while transferring the arriving

severe patients.

5.2 Discharge of a Stroke Patient

Illustrative Example V: Consider the event of a patient discharge when all beds are occupied;

i.e., one bed becomes available. The cost parameters are taken to be π = (200,250) and κ= 2π. In

Figure 3, we show the optimal decision when a mild stroke patient is discharged for all combinations

of x1 and x2 and when b1 = b2 =B/2 before the patient discharge takes place. In this figure, observe

that when 1≤ x1 ≤ 3 and one bed becomes available, we begin by assigning the emptied bed to

a severe stroke patient. But if the number of severe stroke patients increases, it would be better

to give that bed to a mild stroke patient. This seems to be counter-intuitive, as beds are assigned

to mild patients even when there are severe patients waiting in the queue. The observation can

be rationalized by considering the slower discharge rate of severe stroke patients. As the system

becomes more congested, it becomes advantageous to serve the mild stroke patients who have

higher discharge rate and hence a higher chance of emptying the beds in the near future. This

phenomenon can happen when the waiting costs for the two types are close to each other. If we

increase the waiting cost for severe patients, this phenomenon disappears. This is related to the

observation in Example IV.

Figure 3 Optimal decision if a mild stroke patient is discharged while b1 = b2 = 4.

◦ = No action � = Admit mild stroke patient to bed N = Admit severe stroke patient to bed

Illustrative Example VI: In this example, we are interested in cases where it is optimal to

reserve a newly freed bed for a future arrival of severe stroke patients. We take the cost parameters

to be π = (100,1500) and κ = 2π. We also assume x2 = 0, otherwise bed reservation for severe
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stroke patients cannot be optimal. When conduct a parametric analysis on b1 when all beds are

occupied (i.e., b1 + b2 =B). We vary b1 from one to B to demonstrate how the reservation pattern

changes depending on the patient mix in the ward in the event of a discharge of a mild stroke

patient. Figure 4 depicts the optimal decision in this parametric analysis. Evidently, it is optimal

to reserve a bed for severe stroke patients when their waiting cost is much higher than that of the

mild stroke patients. Note that the threshold on x1 above which we stop reserving increases as the

number of occupied beds by mild stroke patients (b1) increases.

Figure 4 Optimal decision if a mild stroke patient is discharged while x2 = 0 and b1 + b2 = 8.

◦ = No action (Reservation) � = Admit mild stroke patient to bed

Remarks: The illustrative examples demonstrate the complex structure of the optimal policy.

Even though these examples suggest some special forms of admission policy (threshold policy), the

precise form of the optimal policy is quite intricate and varies with the model parameters.

6. Solution Methodology

The Bellman equation for an average cost DP can be solved with the relative value iteration

algorithm in a reasonable amount of time when the size of the problem is relatively small. As the

number of patient types (n), the number of beds in the ward (B), or the waiting room capacity

(K) increase, the curse of dimensionality hinders us from obtaining the optimal solution of the DP.

Thus, we propose an approximation scheme to find a good admission policy in large-scale instances

of the problem.

Our proposed approach involves two steps. The first step is to build a static model in which

we assume the beds are allocated to different patient types and the allocation does not change

over time. By solving this static model, we find the number of beds that should be allocated to

each type so that the average cost per period is minimized. We also determine what proportion
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of patients from each type should be transferred to another hospital. The average cost of such a

model accounts for waiting costs of patients as well as transfer costs. We call this model static

because the policy is fixed over time irrespective of the state of the system.

The second step is to develop an ADP which can be solved in a reasonable time frame. To do

so, we exploit some information from the static model’s solution, including the opportunity cost

of occupying a bed, the number of beds allocated to each type, the average waiting time, and the

average queue length of each patient type. Then, the bias function h(x,b) is estimated using this

information. To be more precise, we choose an arbitrary patient type. The value of bias function

in state (x,b) is assumed to be the sum of some contributions from all patient types in that state.

We estimate the contributions of all types of patients except that arbitrarily chosen one using the

information extracted from the solution of the static model. For that specific type we leave the

contribution unknown. We plug the estimated bias functions back into the Bellman equation to find

the unknown contributions. This will lead to a DP with only one type of patient, which is simpler

to solve. We iterate this procedure for all types of patient to find all the unknown contributions. At

the end, we sum all the contributions up to approximate h(x,b). Based on the approximate bias

function, we can create an admission policy. Figure 5 shows all these steps and their interactions.

Figure 5 Schematic view of solution methodology

6.1 The Static Model

In this section, we present a static model that is based on queueing approximation of the problem.

This static model allocates a certain number of beds exclusively for each type of patient. As opposed

to the dynamic optimal policy obtained from Bellman equation, this model determines a static

policy which does not change over time and is not influenced by the state of the system.

Suppose the number of beds dedicated to type-i patient is b̃i. The system with b̃i beds serving

incoming type-i patients can be viewed as a queue with b̃i servers. Due to the constraint on the

total number of waiting patients, the type of queue we are dealing with for type-i patients is an
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M/M/b̃i/b̃i+ki queue. Here ki is the upper bound on the length of queue for type-i patients, above

which the new arrivals will be turned away. The service rate is µi but the arrival rate should not

necessarily be equal to λi, because we can transfer some patients upon their arrival to another

hospital. So the rate of patients entering the system can be less than the original arrival rate.

Therefore, we introduce a decision variable for the adjusted arrival rate as λ̃i.

The total average cost of this queue is the sum of the average waiting cost of the patients and

the average cost of transferring the new arrivals. Let us denote the average number of waiting

patients of type i in the queue by Li. So the average waiting cost is given by Li times the waiting

cost per unit time. Also, on average, (λi− λ̃i) of type-i patients are transferred to another hospital

per unit time. Note that a portion of new arrivals will be blocked due to lack of space in the

waiting area, which is λ̃ipki (pki is the probability that there are ki patients waiting in the queue).

So in total, λi − λ̃i(1− pki) of the arrivals are transferred. The associated transfer cost would be

κi

(
λi− λ̃i(1− pki)

)
per unit time.

In a general M/M/c/c+k queue, with arrival rate of λ and service rate of µ, the average length

of queue is given by (Gross et al., 2008)

L=

{
pr

cρ
c!(1−ρ)2 [1− ρk+1− (1− ρ)(k+ 1)ρk], (ρ 6= 1) ,
pr

c

c!

k(k+1)

2
, (ρ= 1) ,

(4)

where r= λ/µ and ρ= r/c. The blocking probability is calculated using

pk =
rc+k

c!ck
p, (5)

where

p =


[
rc

c!
( 1−ρk+1

1−ρ ) +
∑c−1

n=0
rn

n!

]−1

, (ρ 6= 1) ,[
rc

c!
(k+ 1) +

∑c−1

n=0
rn

n!

]−1

, (ρ= 1) .
(6)

Note that the average waiting time is obtained by W = L
λ(1−pk)

.

The goal of the static model is to allocate all available beds (B) and waiting room capacity (K)

among different types of patients such that the average cost of the system is minimized. This can

be done by using the following mixed-integer program:

(SM) F ∗ = Minimize
n∑
i=1

πiLi +
n∑
i=1

κi

(
λi− λ̃i(1− pki)

)
Subject to

n∑
i=1

b̃i ≤B,
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n∑
i=1

ki ≤K,

λ̃i ≤ λi, ∀i,

λ̃i, b̃i ≥ 0,

b̃i, ki integer, ∀i.

Proposition 1. The optimal solution of the (SM) gives an upper bound on the optimal average

cost in the (DP); i.e., F ∗ ≥ ρ∗.

The proof of Proposition 1 is straightforward since the optimal solution of the static model (SM)

is always a feasible policy for (DP).

In order to solve the static model as a continuous non-linear program, we relax the integrality

constraints on the number of allocated beds (b̃i) and waiting room capacity (ki). To find the length

of queue when the number of beds is not integer, the following algorithm can be used. It also

provides the values for blocking probabilities.

1. If λ̃i = 0, then Li = 0 and pki = 0.

2. If λ̃i 6= 0 and b̃i = 0, then Li =∞ and pki = 1.

3. If λ̃i 6= 0, b̃i 6= 0 and b̃i is integer, then Li and pki are calculated through Equations (4) and

(5).

4. If λ̃i 6= 0 and b̃i 6= 0 and b̃i is non-integer, then b̃i is rounded to nearest integer (called bnew)

and service rate is adjusted to µnew = b̃iµi
bnew

. The Li and pki are calculated using bnew and µnew.

For non-integer values of ki, we take the following interpolation approach:

1. Li(ki) = (ki−bkic)Li(dkie) + (dkie− ki)Li(bkic).

2. pki = (ki−bkic)pdkie+ (dkie− ki)pbkic.

where bkic and dkie refer to the biggest integer number less than or equal to ki and smallest integer

number greater than or equal to ki, respectively.

Denote the solution of (SM) by (λ̃∗i , b̃
∗
i , k
∗
i ) for all i. Based on this solution, the maximum number

of beds occupied by type-i patients is b̃∗i . The number of waiting patients of type i is limited to k∗i .

Also, we reject a fraction of new arrivals so that the actual rate of patients who enter the system

is λ̃∗i . The other piece of information that we extract from the solution of the static model is the

value of dual variable of the first constraint (the constraint on the number of allocated beds). The

value of this variable (which we denote by α) gives how much the average cost of the system can be

reduced if we have one more bed available. Therefore, it can be interpreted as the opportunity cost

of occupying a bed for one unit time (or simply, value of a bed). We will use this information in

deriving the approximate dynamic program and developing two static policies to use as benchmarks

in computational experiments.
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6.2 Approximate Dynamic Programming

The formulation (DP) can be written as a linear program as follows:

(LP) ρ∗ = maxρ

h(x,b) + ρ≤πTx +
n∑
i=1

λi min
ai∈Ui(x,b)

{κiti +h(x + (1− ai− ti)ei,b + aiei)}

+
n∑
i=1

biµi min
di∈Di(x)

{h(x−di,b− ei + di)}

+

(
1−

n∑
i=1

λi−
n∑
i=1

biµi

)
h(x,b), ∀x,b.

In the above, the decision variables are ρ and h(·). We also note that the terms on the right

hand side of the constraint can be linearized by expanding the constraint. We prefer the current,

non-linear, form for development later in the paper.

Recall from the solution of (SM) that for type-i patients, the number of allocated beds is b̃∗i , the

adjusted arrival rate is λ̃∗i , and the maximum length of queue is k∗i . Furthermore, we can calculate

the average number of type-i patients in the queue (denoted by Li
∗), and their average waiting

time (denoted by Wi
∗). Another piece of information we use from the static model is the dual

variable associated with the first constraint in (SM). As we mentioned earlier, we denote the value

of this dual variable by α and it can be interpreted as opportunity cost of occupying one bed per

unit time.

The bias function h(x,b) in (LP) can be approximated by:

h(x,b)≈ hi(xi, bi) +
∑
j 6=i

(
πjWj

∗(xj −Lj∗)+ +
α(bj − b̃∗j )+

µj

)
, ∀i, (7)

where (y)+ = max(0, y). For each type j 6= i, the contribution to the bias function is estimated by

πjWj
∗(xj −L∗j )+ +

α(bj−b̃∗j )+

µj
and for type i, the contribution is represented by a general function

hi(xi, bi). For type-j patients, if we control the system according to the solution of (SM), we expect

to see, on average, L∗j patients waiting in the system. So if the number of waiting patients is less

than or equal to L∗j , there is no extra cost than the average cost and the contribution is zero. But

if xj ≥ L∗j , then bias from average cost can be estimated by the waiting cost of excess patients

(xj −L∗j )+. We know that from (SM), a typical patient of type j is expected to wait Wj
∗ units of

time and the waiting cost per unit time is πi. So the estimated contribution of the extra patients

of type j is πjWj
∗(xj −L∗j )+.

Similarly, the cost of occupying the bed by type-j patients is estimated. For each bed occupied

in addition to the allocated beds in solution of (SM), b̃∗i , the opportunity cost per unit time is
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α(bj− b̃∗j )+. We know that on average, a typical patient of type j stays in bed for µ−1
j units of time.

Therefore, the total opportunity cost can be expressed by αµ−1
j (bj − b̃∗j )+.

Plugging (7) into (LP) and simplifying, we obtain a new linear program:

(LP1) maxρ

hi(xi, bi) + ρ≤πTx +λi min
ai∈Ui(x,b)

{
κiti +hi(xi + 1− ai− ti, bi + ai)

}

+
∑
k 6=i

λk min
ak∈Uk(x,b)

{
κktk +πkWk

∗I{ak + tk = 0, xk ≥L∗k}+
α

µk
I
{
ak = 1, bk ≥ b̃∗k

}}

+ biµi min
di∈Di(x)

{
hi(xi− dii, bi + dii− 1) +

∑
j 6=i

(
α

µj
I
{
dij = 1, bj ≥ b̃∗j

}
−πjWj

∗I
{
dij = 1, xj ≥L∗j + 1

}
)

}
+
∑
k 6=i

bkµk min
dk∈Dk(x)

{
hi(xi− dki, bi + dki)

−hi(xi, bi)−πkWk
∗I{dki = 1, xk ≥L∗k + 1}− α

µk
I
{
dkk = 0, bk ≥ b̃∗k + 1

}
+
∑
j 6=i,k

(
α

µj
I
{
dkj = 1, bj ≥ b̃∗j

}
−πjWj

∗I
{
dkj = 1, xj ≥L∗j + 1

})}
+ (1−λi− biµi)hi(xi, bi), ∀x,b.

The constraint in (LP1) is rather complex. In order to further simplify the constraint, we take

the following steps. First, we replace Ui(x,b) with

U
′

i (xi, bi) =

{
ai = (ai, ti)∈ {0,1}2

∣∣∣∣ai ≤ I{bi <B} , I{xi =K} ≤ ai + ti ≤ 1

}
.

Second, by relaxing the constraint dj ≤ xj for all j 6= i, Di(x) can be replaced with

D
′

i(xi) =

{
di = (di1, . . . , din)∈ {0,1}n

∣∣∣∣dii ≤ xi, n∑
j=1

dij ≤ 1

}
.

Observe that Ui(x,b)⊆ U ′i (xi, bi) and Di(x,b)⊆D′i(xi). Similarly, we replace Uk(x,b) and Dk(x)

for k 6= i, respectively, with

U
′

k(xi, bi) =

{
ak = (ak, tk)∈ {0,1}2

∣∣∣∣ak ≤ I{bi <B} , I{xi =K} ≤ ak + tk ≤ 1

}
,

and

D
′

k(xi) =

{
dk = (dk1, . . . , dkn)∈ {0,1}n

∣∣∣∣dki ≤ xi, n∑
j=1

dkj ≤ 1

}
.

Note that Uk(x,b)⊆U ′k(xi, bi) and Dk(x,b)⊆D′k(xi). In the next step, we make the right hand

side of the constraint dependent only on (xi, bi). Let us define x−i = {x1, . . . , xi−1, xi+1, . . . , xn} and

b−i = {b1, . . . , bi−1, bi+1, . . . , bn}. Now, in order to make it independent of x−i and b−i, we take the
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minimum over x−i and b−i for each given (xi, bi). Consequently, by using the new action space and

simplifying, the constraint of (LP1) will be a function of only xi and bi, and can be written as:

hi(xi, bi) + ρ≤ πixi +λi min
ai∈U

′
i (xi,bi)

{
κiti +hi(xi + 1− ai− ti, bi + ai)

}
+ (1−λi− biµi)hi(xi, bi)+

min
(x−i,b−i)∈B(xi,bi)

{∑
k 6=i

πkxk +
∑
k 6=i

λk min
ak∈U

′
k

(xi,bi)

{
κktk +πkWk

∗I{ak + tk = 0, xk ≥L∗k}+

α

µk
I
{
ak = 1, bk ≥ b̃∗k

}}
+ biµi min

di∈D
′
i(xi)

{
(1− dii)hi(xi, bi− 1) + diihi(xi− 1, bi)

+
∑
j 6=i

dij

(
α

µj
I
{
bj ≥ b̃∗j

}
−πjWj

∗I
{
xj ≥L∗j + 1

})}

+
∑
k 6=i

bkµk min
dk∈D

′
k

(xi)

{
(1− dkk)

(
− α

µk
I
{
bk ≥ b̃∗k + 1

})
+ dik

(
hi(xi− 1, bi + 1)−hi(xi, bi)

)

− dkk (πkWk
∗I{xk ≥L∗k + 1}) +

∑
j 6=i,k

dkj

(
α

µj
I
{
bj ≥ b̃∗j

}
−πjWj

∗I
{
xj ≥L∗j + 1

})}}
,

∀xi ≤K,bi ≤B,

where B(xi, bi) =

{
(x−i,b−i)

∣∣∣∣∑k 6=i xk ≤K −xi,
∑

k 6=i bk ≤B− bi
}

.

We can take out the minimization over x−i and b−i from above and write it as a separate mixed-

integer program (MIP). We need to introduce binary variables to replace the indicator variables as

well as some other binary and integer variables to remove the non-linear terms from the objective

function. By taking all these steps, we will have an MIP with linear constraints and linear objective

function, which is stated in detail in EC.3. The resulting MIP can be easily solved by CPLEX

even with a large number of variables and constraints and we denote it by MIP(xi, bi, hi(xi, bi))

to emphasize its dependency on xi, bi and hi(xi, bi). By plugging back the MIP into the (LP1),

we have:

(LP2) maxρ

hi(xi, bi) + ρ≤ πixi +λi min
ai∈Ui(xi,bi)

{
κiti +hi(xi + 1− ai− ti, bi + ai)

}
+ (1−λi− biµi)hi(xi, bi)

+ MIP(xi, bi, hi(xi, bi)), ∀xi ≤K,bi ≤B.

Now we need to solve (LP2) with ρ and hi(·) as unknown variables. The structure of (LP2) is

equivalent to an average cost DP with state variables (xi, bi), and therefore is solvable by the rela-

tive value iteration algorithm. By implementing this decomposition scheme, we are approximating

(DP), which has 2n state variables by n separate, smaller DP with only two state variables.
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The optimal average cost obtained from value iteration algorithm is denoted by ρ∗i . After imple-

menting this algorithm, we also get hi(xi, bi) for all i, xi and bi. In the process of deriving (LP2), we

relaxed some of the constraints in action space that exist in original (LP). So the optimal average

cost from (LP2) should be a lower bound for the optimal average cost. This result is summarized

in the following proposition.

Proposition 2. The optimal objective function of (LP2) gives a lower bound on the optimal

average cost in (DP); i.e., ρ∗i ≤ ρ∗ for each i. Consequently, maxi ρ
∗
i ≤ ρ∗.

6.3 The ADP Policy

After obtaining hi(xi, bi) for each i, we can approximate the overall h(·) function according to:

h(x,b)≈
n∑
i=1

hi(xi, bi)≡ h̃(x,b).

Once we know h̃(x,b), we can use the original (DP) to determine an action in each state (x,b).

We can explain the rules that constitute the ADP policy as follows:

The ADP Policy:

1. In the case of arrival of a type-i patient, compare the costs associated with admission of the patient

to the queue (if there is space in the waiting room), admission to the ward (if there is an empty bed), and

transferring to another hospital, which are h̃(x + ei,b), h̃(x,b + ei), and κi + h̃(x,b), respectively and

choose the decision with the minimum cost.

2. In the case of discharge of a type-i patient, compare the costs associated with admission of a type-j

patient from the queue (any type of which there is at least one patient waiting in the queue) and admitting

no patient, which are h̃(x−ej ,b−ei+ej); ∀j : xj 6= 0 and h̃(x,b−ei), respectively and choose the decision

with the minimum cost.

7. Computational Experiments with Realistic Problem Instances

We consider problem instances with four patient types. Note that with four types of patients

and a large number of beds, the optimal policy cannot be computed exactly due to the curse of

dimensionality. In Section 7.1, we first describe the Bed Allocation policy and the Bid Price policy

based on the solution of the static model (SM). We introduce six instances of the problem in

Section 7.2, while a comparative analysis between the two static policies, i.e., the Bed Allocation

and the Bid Price policies, the first-come-first-serve (FCFS) policy (as a benchmark), and the

ADP policy over these six problem instances is reported in Section 7.3. Recognizing the difficulties
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associated with the implementation of the ADP policy in practice, Section 7.4 presents the Priority

Cut-off policy that is inspired by the ADP policy described in Section 6.3. In Section 7.5, we report

on a second set of comparative analysis between the ADP policy, the ADP-based Priority Cut-off

policy, and the current policy being used at the MNH. In Sections 7.6 and 7.7, we examine how

the performance of the ADP policy is affected with respect to non-stationary patient arrivals and

non-linear waiting cost functions.

7.1 Two Static Admission Policies

Using the solution of (SM), we build two heuristic policies. The first heuristic policy uses (λ̃∗i , b̃
∗
i )

for all i. At any given time, the maximum number of beds occupied by type-i patients is b̃∗i . Also,

we transfer some of the new arrivals of type-i patients based on the adjusted arrival rate (λ̃∗i ). We

call this static policy the Bed Allocation (BA) policy, which is summarized below.

The Bed Allocation (BA) Policy:

1. Admit an arriving type-i patient if the number of occupied beds by type-i patients is less than b̃∗i .

2. When all b̃∗i beds are occupied, and there is room available in the ED (i.e.,
∑n

i=1 xi <K), admit the

new arrival to the queue with probability of pi =
λ̃∗
i

λi
and transfer with probability of 1−pi. If

∑n

i=1 xi =K,

we have no option except transferring the new arrival.

An alternative policy is motivated by the revenue management literature, which we call the Bid

Price (BP) policy. This involves using the dual variable of the first constraint in (SM) (denoted

by α). Recall that α represents the opportunity cost of occupying a bed per unit time. The average

LOS for a patient of type i is µ−1
i and hence, the average opportunity cost of admitting one type-i

patient to a bed is αµ−1
i . If the cost of transfer to another hospital is less than αµ−1

i , the heuristic

policy involves transferring all arrivals of type-i patients. This makes sense when there is no patient

in the system (x = 0) or when there is at least one available bed (note that these two are equivalent

because there is no reservation in this type of policy). In the event that there are some patients

present in the queue, however, a more precise policy would be to incorporate the patient’s waiting

cost. We approximate the average waiting cost using average waiting time obtained from (SM).

From the solution of (SM), we know that, on average, type-i patients wait for Wi
∗ = Li

∗

λ̃∗i (1−pk∗
i

)
units

of time. Hence, the waiting cost can be estimated as πiWi
∗. Using this average waiting cost, in the

case that x≥ 0, we let a patient from type i to enter system if αµ−1
i +πiWi

∗ ≤ κi and transfer the

new arrival, otherwise.
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To complete the BP policy, we also need to define a decision rule for admitting waiting patients

in the queue when a bed becomes available. There are two possible options: using FCFS rule or

prioritizing patients with higher waiting cost per period. To find the best policy, we tested different

combinations of FCFS and prioritization with and without incorporation of waiting costs. The

priority rule incorporating waiting costs performed better than others in most of the numerical

examples. Thus, our BP policy is summarized below.

The Bid Price (BP) Policy:

1. If there is at least one bed available (
∑n

i=1 bi <B), admit an arriving type-i patient to the ward if

αµ−1i ≤ κi and transfer otherwise.

2. If there is no bed available (
∑n

i=1 bi = B), admit a new arriving patient of type i to the queue if

αµ−1i +πiWi
∗ ≤ κi and transfer otherwise.

3. If one bed becomes available, priority is given to the patients with highest waiting cost (as a tie-

breaking rule, the patient with smaller index is admitted).

7.2 Six Problem Instances

In light of the data summarized in Section 4, we first consider a base case, in which π =

(70,90,145,295), κ= 2π, and B = 16. We develop two more cases by altering the service capacity

by 25% in both directions, while the cost parameters remain the same. By doing so, we vary the

level of congestion in the system to see its impact on the performance of the policy alternatives.

The base case corresponds to case 2, whereas the problem instances with B = 12 and B = 20 cor-

respond to case 1 and case 3, respectively. In cases 4-6, we increase the waiting costs for severe

patients (π = (70,90,500,600)) as well as the transfer costs (κ = 3π) in order to observe how the

admission policies respond to higher levels of patient sensitivity to the ED boarding. For all six

problem instances, we assume that the ED can accommodate a maximum of six boarding patients,

i.e., K = 6.

We are unable to find the optimal policy for any of the six cases in our comparative studies.

Nevertheless, it is possible to compare the ADP policy to the other heuristic policies. To this end,

we developed a simulation model to help us find the average cost associated with a specific policy.

The length of simulation horizon is considered to be 10,000 days with 1,000 days of warm-up

period and we replicate the simulation for 100 times. Using the simulation results, we also report

the average waiting time of all patients and the average transfer rates for each policy alternative.

The simple averages do not reflect the true performance of each policy since transferring or ED
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boarding a mild patient is not as undesirable as transferring one severe patient. Therefore, we use

the unit time waiting costs (πi) as weights to compute the weighted averages.

7.3 Comparative Analysis I

We now turn to a performance comparison among the First-come-first-serve (FCFS), Bed Alloca-

tion (BA), Bid Price (BP), and the ADP policies. The average total costs of the four admission

policies for the six cases are depicted in Figure 6. In the figure, each plot corresponds to a case,

and is located according to its congestion level (across the horizontal axis) and patient sensitivity

to waiting (across the vertical axis). Evidently, the ADP policy produces the lowest average total

cost in all cases. The other policy options fail to maintain low average total costs under all six

patient sensitivity and congestion scenarios, e.g., the BP policy under case 3.

Figure 6 Average quality of life (QoL) lost per day – ADP policy versus static admission policies

The average waiting times and the average rates of patient transfer associated with the admission

policy options are depicted in Figure 7. The trade off among these two performance measures is

quite evident from this figure. The more a policy recommends transferring the patients to another

hospital, the less the average waiting time experienced by the remaining patients. Note that the

ADP policy seems to result in a more acceptable overall performance by balancing these two

metrics. Even though the ADP policy does not produce the lowest average waiting time in all

cases, its transfer rate is consistently reasonable.

In order to better display the comparison of the FCFS, BA, BP, and ADP policies, the plots

in each of these two figures (and the two following figures) are not of the same vertical scale.
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Consequently, these figures do not highlight the true impact of increased congestion and patient

sensitivity levels on the three performance measures.

Figure 7 Average waiting time and rate of transfers – ADP policy versus static admission policies

We make the following observations:

1. When the transfer cost increases (i.e., moving up in Figure 7), all policies – except BP –

decrease the rate of transfers, which results in longer waiting times.

2. When the system is more congested (i.e., moving right in Figure 7), the transfer rates increase

in all policies in order to avoid much longer ED boarding times.

3. The BP policy in cases 1-3 is reduced to a simple priority queue with no transfers. This

happens due to the small value of α and average waiting times obtained from the (SM). In all

these cases, the BP policy also dominates the FCFS policy.

4. The BA policy does not seem to be very promising. The total average cost of this policy is

almost the highest in all cases, except in case 3 where its transfer rate is not acceptable.

The overall managerial insight from Figures 6 and 7 is that, as the congestion and patient

sensitivity levels increase, the ADP policy increasingly outperforms the other policies in terms of

achieving both lower costs and acceptable trade offs between waiting times and patient transfers.

7.4 A More Practical Policy

The ADP policy can be challenging to implement as it provides an action for every state of the

system. Through a detailed analysis of the results of the ADP policy, however, we observe that

often only a few states of the system are critical in nature. For instance, when there is only one
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bed available in the ward and a new patient arrives, the type of action we must take in response to

the new arrival is crucial. Should we admit this new patient to the bed or save the last bed for the

arrival of a more severe patient in the future? As a more general question, how many beds should

we reserve for severe patients by not admitting the mild patients? Or, is reservation necessary at

all? In contrast, making the best decision when half of the service capacity is available seems to be

trivial. Thus, we develop a dynamic heuristic policy by following the ADP policy in the so-called

critical states and applying a simple policy such as FCFS rule in other states, which would be

much easier to implement.

In order to facilitate exploring the structure of the ADP policy, we first organize the patients

into two groups regardless of their disease; mild and severe patients. The patients in the mild group

have lower waiting cost and shorter average LOS; while in the severe group patients are highly

sensitive to waiting and they occupy the bed for longer time periods. When we study the rules that

constitute the ADP policy in six cases, it is evident that the severe patients should be prioritized

over mild patients. The ADP policy always admits a severe patient if there is an available bed.

However, this is not true for the mild patients. The ADP policy tends to reserve some beds for the

severe patients (by not admitting the mild patients to those beds) unless there is a high chance of

a patient discharge in the near future.

The chance of a future discharge depends on the patient mix in the ward, particularly the number

of beds occupied by severe patients. Denote the aggregate number of severe patients staying in

the ward by bs. Based on the value of bs at any time, we classify the chance of a discharge into

three levels. The chance of a discharge is deemed high if bs ≤ θ1B, medium if θ1B < bs ≤ θ2B, and

low otherwise; 0≤ θ1 < θ2 ≤ 1. We also introduce a threshold on the cost associated with transfer

that affects the transfer decision. The transfer cost in this heuristic policy is defined to be small

if κ≤ ωπ and to be large, otherwise. The values for these thresholds can be derived based on the

ADP policy recommendations at the critical states of the system.

Note that some simplifications are required to obtain the thresholds from the ADP policy. For

example, in developing this heuristic policy we do not incorporate the number of patients in the

queue in our admission decisions. This is justified by the results we obtained from the ADP policy

in all six cases and it is mostly due to the low arrival rates of patients to the system in our examples.

It is presumed that the queues are empty when a new patient arrives and consequently the decision

is based only on the state of the ward. Therefore, the rules in this heuristic policy comply with the

results of our illustrative example in Figure 2 of Section 5.

We call this heuristic policy the ADP-based Priority Cut-off (PC) policy because (i) it gives

priority to certain types of patients, (ii) it changes behavior when the state of the system surpasses

the cut-off points. Priority cut-off policies are commonly used in the context of patient scheduling
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and healthcare capacity allocation (see for example; Esogbue and Singh (1976), Green et al. (2006),

Ayvaz and Huh (2010), Mandelbaum et al. (2012)). However, finding the best value of cut-off

points (or thresholds) for this type of policy can be challenging. For our problem, the ADP policy

could be used to find the structure of the PC policy as well as the appropriate threshold values. A

general form of such ADP-based PC policy is stated below. Note that in the following, S denotes

the number of beds reserved for severe patients.

The ADP-based Priority Cut-off (PC) Policy:

1. When a severe patient arrives:

(a) If at least one bed is available, admit the patient to the ward.

(b) If all beds are occupied:

i. If the transfer cost is small, then transfer the patient.

ii. Otherwise, admit the patient to the queue if the chance of a discharge is high and transfer the

patient otherwise.

2. When a mild patient arrives:

(a) If more than S beds are available, admit the patient to the ward (i.e., FCFS policy).

(b) If between one and S beds are available:

i. admit the patient to the ward if the chance of a discharge is high,

ii. admit the patient to the queue if the chance of a discharge is medium,

iii. transfer the patient if the chance of a discharge is low.

(c) If all beds are occupied, admit the patient to the queue if the chance of a discharge is high and

transfer the patient otherwise.

3. If a discharge occurs, the priority of admitting a patient to the ward is always given to the severe

patients. If no severe patient is waiting in the queue, admission of a mild patient follows item 2.a.

7.5 Comparative Analysis II

The second part of our analysis in this section involves comparing the ADP-Based Priority Cut-off

(PC) policy and the current policy being used in the MNH with the ADP policy. The MNH policy

has been briefly discussed in Section 1. It allocates a fixed number of beds to each patient type

regardless of their level of severity and leave some beds flexible to be used by all patient types. To

be more specific, six beds out of 16 available beds are dedicated to stroke patients, same number

of beds are allocated to non-stroke patients, and the rest of beds are being used by both type of

patients.
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Let us denote the number of beds dedicated to stroke patient beds by bstroke, the number of beds

dedicated to non-stroke patient beds by bnon-stroke, and the number of flexible beds by bflexible. The

patients are admitted to the beds until all the dedicated beds to their type and flexible beds are

full. Then, they wait in the queue for a bed in the ward until the waiting time exceeds a threshold

(denoted by d) in which case they have to be transferred. The hospital uses the same time threshold

for all patient transfers. We summarize this policy, which is a static bed allocation policy, below.

The Current (MNH) Policy:

1. When a patient arrives, admit the patient to the bed if any of the dedicated beds to that patient type

is empty. If all the dedicated beds are full, the next option will be the flexible beds. If all the dedicated and

flexible beds are occupied, then the patient waits in the queue.

2. If the wait time for a patient in the queue exceeds the transfer threshold, the patient is transferred

to another hospital.

For the base case (case 2) we know that (bstroke, bnon-stroke, bflexible) = (6,6,4). For other cases, we

adjust the bed allocations by simply keeping the same ratios as in case 2 between the beds assigned

to different patient types. To find the transfer threshold (d), we follow the same idea we used in

section 4.3 to estimate κ. As we have set κ = 3π for cases 4-6, this implies the transfer threshold

for the patients in these cases is three days (72 hours). Therefore, the current (MNH) policy uses

the following parameters in our experiments:

• In cases 1 and 4, we have (bstroke, bnon-stroke, bflexible) = (8,8,4).

• In cases 2 and 5, we have (bstroke, bnon-stroke, bflexible) = (6,6,4).

• In cases 3 and 6, we have (bstroke, bnon-stroke, bflexible) = (5,5,2).

• In cases 1-3, we have d= 48 hr, and In cases 4-6, we have d= 72 hr.

Here, we also remind the reader that the thresholds of the ADP-based PC policy explained in

Section 7.4 vary with the cost parameters. By examining the results of the ADP policy for the six

cases, we observed the following:

• In all cases, the threshold associated with the transfer cost is ω= 2.

• In cases 1-3, we have S = 1, θ1 = 1/4, and θ2 = 1/2.

• In cases 4-6, we have S = 4, θ1 = 1/2, and θ2 = 3/4.

Since the waiting costs of the severe patients are much higher in cases 4-6, the number of beds

reserved for them is larger. Also, the larger transfer costs in cases 4-6 lead to higher thresholds for

evaluating the likelihood of having an available bed in the future.



Samiedaluie et al: Managing Patient Admissions in a Neurology Ward
32 Article submitted to Operations Research; manuscript no. OPRE-2014-02-100.R3

The average total costs of the ADP, PC and MNH policies are depicted in Figure 8. The ADP

policy has the lowest average cost in all cases, whereas the costs associated with the PC policy are

consistently within an acceptable range of the ADP policy. The difference between the ADP policy

(or PC policy) and the MNH policy is more pronounced when the patients are more sensitive to

waiting and service capacity is limited (i.e., cases 2-3 and 5-6).

Figure 8 Average quality of life (QoL) lost per day – ADP policy versus practical admission policies

The average waiting time and average rates of patient transfer for the three policies are shown in

Figure 9. The PC policy is more conservative than the ADP policy in terms of patient transfers. In

all cases, it transfers fewer patients and consequently it has higher average waiting times. Compared

to the current policy, the ADP policy decreases the waiting time significantly while its transfer

rates are slightly higher in some cases. The PC policy, however, reduces the wait times in most cases

by transferring the same or less number of patients. Hence, it could be utilized as an efficient and

practical policy by the hospital to improve the performance of the ward in terms patients’ health

outcomes. It is also important to note that the PC policy generates the second lowest average

costs over six cases compared to the static policy alternatives (i.e., BA, BP, and FCFS policies) in

Section 7.3.

7.6 Non-Stationary Arrivals

Our modeling framework and solution approach assume stationary arrival process. The stationar-

ity assumption is customary in the healthcare operations literature (Patrick et al., 2008) and is

verified using the data obtained from MNH in Section 4. Nevertheless, we show that our work can
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Figure 9 Average waiting time and rate of transfers – ADP policy versus practical admission policies

be adapted to problem settings with non-stationary arrival processes by building on point-wise

stationary approximation (PSA) in the queueing control literature (Green and Kolesar (1991) and

Yoon and Lewis (2004)). We conduct numerical experiments with non-stationary arrival processes

to check the robustness of our proposed ADP approach.

The PSA approach combines solutions from problems with stationary arrivals to construct

heuristic control policies for problems with non-stationary arrival processes. For each problem with

stationary arrivals, the ADP approach proposed before can be applied to obtain a solution. Our

numerical instances consider problems with periodically time-varying arrival rates; that is, the

patient arrival rates follow a cyclic pattern that repeats itself after a given period of time. This

type of time-varying arrival rates are considered in both Green and Kolesar (1991) and Yoon and

Lewis (2004).

Assume that there are τ points at which the arrival rates of patients change (i.e., there are τ + 1

different arrival rates within the cycle). Then each cycle involves τ + 1 sub-period with stationary

arrival rates. To obtain a solution via PSA, a separate problem is solved for each sub-period

where we assume the prevailing arrival rate in the subperiod remains constant over the infinite

time horizon. The resulting problems have stationary parameters, which are then solved using

the solution approach we introduced earlier in the paper. Each stationary problem solved in this

fashion suggests an admission policy. To construct a heuristic policy for the original problem with

non-stationary arrival rates, we piece together policies from the stationary problems, where the

stationary policy from each problem is only implemented for the relevant intervals with constant

arrival rates. Note that the heuristic approach introduced here can be applied for the ADP, PC,

as well as the BA and BP policies.
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To examine the performance of PSA policies, we consider problem instances where the arrival

rates follow a weekly cyclic pattern. Patients arrive at the hospital at higher rates during the first

three days of a week, i.e., between Mondays and Wednesdays. As we move towards the end of a

week, the arrival rates tend to decrease. Specifically, on Thursdays and Fridays, patient arrival

rates are reduced by 50%. The arrival rates are again halved during weekends (Saturdays and

Sundays). Note that there are two points during a week at which the arrival rates change, i.e.,

τ = 2. Therefore, to solve the problem using the PSA approach, we need to solve three (τ + 1)

problems with stationary arrival rates. We have chosen the time-varying arrival rates such that the

arrival rates on Thursdays and Fridays are equivalent to the values for Cases 1-6 in Section 7.2.

The LOS distributions and other problem parameters are also the same as Cases 1-6 in Section

7.2.

We use PSA to construct all policies except FCFS. Table 4 reports average QoL lost per day for

the five policies. The last column of Table 4 shows the percentage improvement of the ADP policy,

compared with the best alternative policies. For Cases 1-3, the best alternative policy is PC, while

the best alternative policy for Cases 4-6 is BP.

To compare the ADP policy to other alternatives, we find the non-stationary BA and BP policies

by solving the SM model with arrival rates of each period. The PC policy again is developed

based on the ADP policy. Both BP and PC are significantly better than FCFS policy in all cases.

Overall, the ADP policy has the best performance, although it is slightly inferior to BP in Cases

5-6, both with very high system congestion level. Therefore, the performance of the ADP policy

seems to deteriorate as the system is heavily congested. For all other cases, the ADP policy shows

significant improvement over alternative policies. Overall, our numerical results suggest that the

proposed ADP policy continues to be a reasonable solution approach for problem instances with

non-stationary problem parameters, which is consistent with the observations in the PSA literature

we cited earlier.

Case
Policy ADP

FCFS BA BP PC ADP Improvement

1 2.84 36.36 2.42 1.81 1.59 13%

2 29.37 60.24 24.22 12.06 9.99 17%

3 170.70 89.50 83.61 64.83 63.26 2%

4 5.44 341.20 4.60 5.09 3.92 15%

5 56.59 116.69 54.93 57.12 55.74 -1%

6 333.61 151.96 140.85 146.33 140.99 -0.1%

Table 4 Robustness of the ADP policy with respect to non-stationary arrivals
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7.7 Non-linear Cost Functions

In this section, we consider non-linear waiting cost functions as it seems more realistic to assume

the patient’s health status deteriorates at higher rates when the waiting time increases. To this

end, we speculate convex piecewise-linear increasing functions for the waiting costs of patients.

For each patient type, we divide the time between zero and the transfer threshold into three-hour

intervals. During each interval the waiting cost is a linear function of time with a slope that is

increasing from one interval to another. The slope increases until the transfer threshold, after which

it remains constant and equal to slope of the last interval.

To find the patient admission policy using the proposed ADP approach, we need to linearize the

cost functions. We run regression models with zero intercept to fit linear lines to the non-linear cost

functions. Using the slopes of the fitted linear functions for each patient type, we solve the ADP

and obtain the associated policy. In order to compare the performance of the admission policies

under linear and non-linear waiting cost structure, we choose the parameters of the non-linear

cost function such that the slope of the fitted line is equal to the waiting cost per unit time (πi)

considered in the problem instances of Section 7.2. We then use simulation to calculate the average

total cost in both scenarios.

The results of this comparison are shown in Table 5. In this table, the percent increase in the

total cost associated with each policy, when the waiting costs are incurred according to a non-linear

function is reported. The last two columns of this table show the percent improvement achieved by

the ADP policy in each scenario over the best of the other policy options. A negative percentage

implies that the ADP policy is dominated by another heuristic policy. From the table, it can be

concluded that the performance of the ADP policy remains robust to the change in the structure

of waiting costs in almost all cases. Except in case 4, in which there is enough service capacity, the

percent improvement of the ADP policy over other policies has in fact increased.

Case
Cost Increase (%) ADP Improvement (%)

FCFS BA BP PC ADP Linear Non-linear

1 63 73 63 41 29 27 42

2 98 53 94 56 33 57 70

3 134 77 126 78 35 61 71

4 64 102 76 96 91 12 -3

5 99 102 92 114 73 24 31

6 137 131 98 151 87 22 26

Table 5 Robustness of the ADP policy with respect to non-linearity of waiting cost
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8. Concluding Remarks

We have considered an admission control and bed allocation problem, incorporating the differenti-

ating features of neurology wards. From a modeling perspective, we presented an average cost DP

that assumes none of the beds in the ward are earmarked to certain patient types. To overcome

the Curse of Dimensionality of DP formulation that prevents us from solving the realistic-size

problem instances in reasonable amount of time, we proposed an ADP that uses some information

from a static queuing model. To the best of our knowledge, the ADP for the average cost problem

has not been fully explored theoretically. A couple of examples are Roubos and Bhulai (2010) and

Roubos and Bhulai (2012) that use ADP in controlling queues with application to call centers. The

numerical results from our experiments on some problem instances, based on Montreal Neurologi-

cal Hospital, revealed that the admission policy suggested by our proposed ADP works very well

compared to the other heuristic policies we have studied.

Recognizing the managerial challenges in implementing the fully state dependent ADP policy, we

also developed an ADP-based Priority Cut-off policy that performs quite well. We must emphasize

that the structure of this heuristic policy is highly dependent on the results of our experiments for

the six problem instances we have considered in the comparative analysis. The goal of developing

such a policy was to demonstrate how an easy-to-use set of admission rules can be derived from

the ADP policy for hospital managers.

The current admission policy at the hospital involves dedicating six beds to stroke patients and

six beds to non-stroke patients, while leaving four beds flexible for both patient types. Furthermore,

a patient transfer request is triggered after 48 hours of ED boarding. In contrast, the proposed

ADP policy does not use earmarked beds and decides to transfer the patient at the time of arrival,

considering the state of the system. By comparing these two policies, we observe that the current

policy can be 70-110% worse than the ADP policy in terms of average HRQoL lost per day. Also,

the ADP policy can decrease the average boarding time in the ED (especially when there are limited

number of beds available such as in case 3 and case 6 of our comparative analysis) significantly

without affecting the average rate of patient transfers. Thus, we provide the following insights

for neurology ward managers: (i) it is better to decide whether or not to transfer a patient to

another hospital immediately upon arrival and by taking into account the state of the system, (ii)

dedicating neurology ward beds to patient types can worsen average ED boarding times, (iii) if the

managers prefer to use an earmarking strategy, it is recommended to do so based on the level of

severity of the patients condition rather than their disease (i.e., along the lines of the PC policy).

The modeling framework proposed in this paper is based on two simplifications. First, a small

percentage of the patients with neurological conditions can be admitted directly to the ward for
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elective surgeries, while this paper is confined to the patients who are admitted through the ED.

Second, some patients, e.g., severe stroke patients, require intensive care for stabilization prior to

being admitted to the ward, which we do not represent in our model. Their LOS in the Neuro-ICU,

however, is most often 48 hours with fairly low variability. Extensions to the model proposed in

this paper to relax these two assumptions constitute fruitful avenues for future research.

The primary structural assumption underlying the model presented in this paper is the medical

infeasibility of caring for neurology patients at off-service beds, i.e., beds located in other wards of

the hospital. Although the use of off-service beds has been common practice in the health sector,

it constitutes a short-term fix for, arguably, prevailing systemic issues in the institution. This is

analogous to the use of inventories to offset the underlying capacity imbalance between sequential

manufacturing processes. The impact of an off-service hospital admission on the health outcome

varies among patient types. According to Singh et al. (2012), for example, the admission of oncology

patients in hallway or in off-service beds did not appear to compromise the timeliness or frequency

of medical assessments. However, delays in nursing care were observed and patient satisfaction was

decreased. For acute heart failure (AHF) patients, however, the negative impact of an off-service

admission can be serious. Cowie et al. (2013) pointed out that mortality can be reduced if AHF

patients are rapidly and accurately assessed in the ED, and admitted to a cardiology ward with the

required expertise. According to the National Heart Failure Audit conducted in 2011-12, only about

half of AHF patients were treated in cardiac wards. The cardiac ward had 7.8% mortality rate for

AHF, whereas mortality was significantly higher at the general medicine and other wards (13.2%

and 17.4%, respectively). Evidence also suggests that the mortality advantage for cardiology ward

treatment persists post-discharge.

We witness a current trend among hospital managers to minimize the use of off-service beds

as part of their efforts to improve the patient flow through the hospital. A recent effort at the

Rouge Valley Health System (RVHS) for the development and implementation of a new bed map

(Williams and Topaloglou, 2013) is a good example. RVHS is a two-site hospital with 479 beds

serving the East Greater Toronto Area. One of the main motivations for the process redesign was

the ”significant problems with off-servicing”. RVHS was able to reduce the medical off-service beds

from 20 to one by the new bed map. Another example is Vibra Hospital of the Central Dakotas.

This is a specialty acute care hospital that provides long-term acute care to complex patients

with multiple comorbidities, requiring an extended stay in a hospital setting. Multidisciplinary

teams comprising up to eight individuals provide specialty care, and hence it is not medically

acceptable to admit a patient to an off-service area in Vibra. The model proposed in this paper

would be applicable to the extent that off-servicing in the hospital is significantly reduced as an

administrative policy.
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On the methodological side, we contribute to the literature on approximate dynamic program-

ming (ADP) for admission control of queues. Allocation of a limited capacity of resources among

several customer types is a critical decision faced in many settings, including healthcare (Gupta,

2013), telecommunications (Paschalidis and Tsitsiklis, 2000), and manufacturing (Buzacott and

Shanthikumar, 1993). While it is common to formulate queueing control problems in the dynamic

programming framework, solving the resulting problems exactly is usually not feasible due to the

large state and/or control spaces. The approach proposed in our paper takes two steps. First, a

queueing control problem is formulated under a static control policy. Second, solution from the

first step is used to build value function approximations in the linear programming based ADP

framework (see, e.g., de Farias and Van Roy, 2003). Our approach is applicable when i) queueing

control under a static policy is tractable, and ii) the approximate linear program resulting from

the value function approximation can be solved. While our paper gives one such example, there

are potentially many other problems where the approach is applicable.

Specific to the healthcare operations context, dynamic programming models of queueing admis-

sion control have been very popular (see, e.g., Ayvaz and Huh, 2010, Helm et al., 2011, Green et al.,

2006). In the aforementioned papers, heuristic control policies are usually based on the analysis of

special cases with certain parameter restrictions on the queues (e.g., all customer types share the

same service rate). In contrast, we build dynamic heuristic control policies based on the analysis of

static control policies; no parameter restrictions are imposed on the queues. While it is certainly

outside the scope of the current research, it is an interesting future research topic to compare and

contrast the two approaches. One advantage of the approach proposed in our work is its sound

theoretical foundation in the general framework of linear programming based ADP.

Within the domain of linear programming based ADP, value function approximations are gen-

erally linear and/or separable. A somewhat unique aspect of our work is that the value func-

tion approximation is nonlinear and nonseparable. We show that the approximate linear program

resulting from such a value function approximation is still tractable. We certainly hope that more

researchers will adopt such approximation architecture in their work in the future.
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Appendices

EC.1. Transitions Probabilities

Here, we present the lemma by Porteus (2002) that is used to calculate the transition rates and

probabilities.

Lemma EC.1.

Assume that the system is in the state (x,b). If the time between two arrivals of type-i patients

(denoted by T ai ) is distributed exponentially with parameter λi and the time between two discharges

of type-i patients (denoted by T di ) is distributed exponentially with parameter biµi and all the arrivals

and discharges are independent of each other, and T is the time to next state transition, then

1. T = min(mini T
a
i ,mini T

d
i ) and is exponentially distributed with parameter

∑n

i=1(λi + biµi),

2. Pr(T = T ai ) = Pr(T = T ai |T = t) = λi∑n
i=1(λi+biµi)

, and

3. Pr(T = T di ) = Pr(T = T di |T = t) = biµi∑n
i=1(λi+biµi)

.

EC.2. Analysis of Patient Arrival Stationarity

To investigate whether the arrival rates vary over time we run Poisson regression analysis, using

STATA 13, given that our data of arrivals fits very well to Poisson distribution. The Poisson

regression model for each patient type uses 4380 points, corresponding to 6-hour time intervals

over three year. In the regression models, we define the number of arrivals within 6 hour time

interval as a dependent variable where we have three independent variable: time of the day, day of

the week and month of the year. Time of the day is defined as a categorical variable which takes

on the values of 12 a.m.–6 a.m. (reference value), 6 a.m.–12 p.m., 12 p.m.–6 p.m., and 6 p.m.–12

a.m. The variable of day of the week takes on the values of Monday to Sunday, where Monday is

the reference value. In a similar way, the variable of month of the year takes on the values from

January to December, where January is the reference value. The results of the Poisson regression

models are shown in Tables EC.1-EC.4.

EC.3. The Mixed-Integer Program

In this section, we provide the details of the mixed-integer program that was used in the last step

of ADP. We pull out the minimization problem over x−i and b−i as a separate MIP and solve it in

every iteration of the ADP. To solve the MIP efficiently we need to define some binary variables

to replace the indicator variables in the minimization problem. The first set of variables is:

zk = I{xk ≥L∗k} and z′k = I{xk ≥L∗k + 1} , ∀k 6= i

rk = I
{
bk ≥ b̃∗k

}
and r′k = I

{
bk ≥ b̃∗k + 1

}
, ∀k 6= i,
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Patient Type Estimate Std. Error Z-Value P-Value 95% CI

Mild Non-Stroke

Month of the Year

February -0.05 0.31 -0.15 0.88 (-0.66,0.57)

March -0.10 0.31 -0.32 0.75 (-0.70,0.51)

April -0.35 0.34 -1.05 0.30 (-1.01,0.31)

May 0.40 0.28 1.47 0.14 (-0.14,0.95)

June -0.07 0.31 -0.21 0.83 (-0.67,0.54)

July -0.10 0.31 -0.31 0.76 (-0.70,0.51)

August -0.32 0.33 -0.97 0.33 (-0.96,0.33)

September -0.02 0.31 -0.05 0.96 (-0.61,0.58)

October 0.00 0.30 -0.10 0.99 (-0.59,0.59)

November 0.08 0.30 0.26 0.80 (-0.51,0.66)

December 0.24 0.29 0.84 0.40 (-0.32,0.80)

Day of the Week

Tuesday -0.14 0.24 -0.60 0.55 (-0.62,0.33)

Wednesday -0.03 0.23 -0.11 0.91 (-0.49,0.43)

Thursday -0.14 0.22 -0.66 0.51 (-0.29,0.59)

Friday 0.08 0.23 0.36 0.72 (-0.36,0.53)

Saturday 0.06 0.23 0.25 0.80 (-0.39,0.51)

Sunday -0.14 0.24 -0.59 0.56 (-0.62,0.33)

Hour of the Day

6 a.m.–12 p.m. -0.01 0.17 -0.07 0.95 (-0.35,0.33)

12 p.m.–6 p.m. -0.10 0.18 -0.57 0.57 (-0.44,0.25)

6 p.m.–12 a.m. -0.09 0.18 -0.51 0.61 (-0.43,0.26)

Constant -2.78 0.28 -9.89 0.00 (-3.33,-2.23)

Table EC.1 Poisson regression analysis for estimating number of arrivals of mild non-stroke patients

along with following constraints:

xk ≥ zkL∗k, xk ≤ (1− zk)(L∗k− 1) + zkM, ∀k 6= i,

xk ≥ z′k(L∗k + 1), xk ≤ (1− z′k)L∗k + z′kM, ∀k 6= i,

bk ≥ rkb̃∗k, bk ≤ (1− rk)(b̃∗k− 1) + rkM, ∀k 6= i,

bk ≥ r′k(b̃∗k + 1), bk ≤ (1− r′k)b̃∗k + r′kM, ∀k 6= i.

Note that M is a positive large number. These constraints assure that the variable takes the

right value as the associated indicator variable does. The second set of binary variables is defined

to remove the non-linear terms in the constraints:

fk = zk(1− ak− tk), ∀k 6= i,
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Patient Type Estimate Std. Error Z-Value P-Value 95% CI

Mild Stroke

Month of the Year

February 0.27 0.29 0.92 0.36 (-0.30,0.84)

March 0.27 0.28 0.97 0.33 (-0.28,0.83)

April 0.24 0.29 0.82 0.41 (-0.28,0.83)

May 0.37 0.28 0.82 0.41 (-0.33,0.80)

June 0.16 0.29 0.54 0.59 (-0.42,0.73)

July -0.10 0.31 -0.31 0.76 (-0.70,0.51)

August 0.00 0.30 0.00 0.99 (-0.59,0.59)

September 0.20 0.29 0.69 0.49 (-0.37,0.77)

October 0.13 0.29 0.43 0.67 (-0.45,0.70)

November 0.38 0.30 1.35 0.18 (-0.17,0.92)

December 0.54 0.27 1.93 0.05 (0.02,1.07)

Day of the Week

Tuesday 0.00 0.21 0.00 0.99 (-0.42,0.42)

Wednesday 0.17 0.21 0.81 0.42 (-0.24,0.57)

Thursday 0.04 0.21 0.19 0.85 (-0.37,0.45)

Friday 0.15 0.21 0.73 0.46 (-0.25,0.55)

Saturday 0.07 0.21 0.35 0.72 (-0.34,0.49)

Sunday -0.12 0.22 -0.53 0.60 (-0.55,0.32)

Hour of the Day

6 a.m.–12 p.m. -0.04 0.16 -0.23 0.82 (-0.35,0.28)

12 p.m.–6 p.m. 0.07 0.15 0.45 0.65 (-0.23,0.37)

6 p.m.–12 a.m. -0.05 0.05 -0.33 0.74 (-0.37,0.26)

Constant -2.78 0.28 -10.56 0.00 (-3.41,-2.34)

Table EC.2 Poisson regression analysis for estimating number of arrivals of mild stroke patients

f ′k = rkak, ∀k 6= i,

along with below constraints:

2fk ≤ zk + (1− ak− tk)≤ fk + 1, ∀k 6= i,

2f ′k ≤ rk + ak ≤ f ′k + 1, ∀k 6= i.

Therefore, for given i, xi, bi and hi(xi, bi), the minimization over x−i and b−i can be summarized

as follows:

min
∑
k 6=i

πkxk +
∑
k 6=i

λk

[
κktk +πkWk

∗fk +
α

µk
f ′k

]
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Patient Type Estimate Std. Error Z-Value P-Value 95% CI

Severe Non-Stroke

Month of the Year

February 0.18 0.40 0.46 0.65 (-0.60,0.97)

March -0.69 0.50 -1.38 0.17 (-1.67,0.29)

April 0.03 0.41 0.08 0.93 (-0.77,0.83)

May 0.29 0.38 0.75 0.45 (-0.46,1.04)

June 0.03 0.41 0.08 0.93 (-0.77,0.83)

July 0.00 0.41 0.00 0.99 (-0.80,0.80)

August 0.29 0.38 0.76 0.45 (-0.46,1.04)

September 0.19 0.40 0.47 0.64 (-0.59,0.96)

October 0.00 0.41 0.10 0.99 (-0.80,0.80)

November 0.03 0.41 0.08 0.93 (-0.77,0.83)

December 0.16 0.39 0.39 0.69 (-0.61,0.93)

Day of the Week

Tuesday 0.13 0.30 0.44 0.66 (-0.45,0.72)

Wednesday -0.21 0.32 -0.64 0.52 (-0.85,0.43)

Thursday 0.05 0.31 0.16 0.87 (-0.55,0.65)

Friday 0.05 0.31 0.16 0.87 (-0.55,0.65)

Saturday 0.10 0.30 0.33 0.74 (-0.50,0.69)

Sunday 0.05 0.31 0.17 0.87 (-0.55,0.65)

Hour of the Day

6 a.m.–12 p.m. 0.15 0.23 0.68 0.50 (-0.29,0.60)

12 p.m.–6 p.m. 0.03 0.23 0.11 0.91 (-0.43,0.49)

6 p.m.–12 a.m. 0.00 0.24 0.00 0.99 (-0.46,0.46)

Constant -3.51 0.38 -9.23 0.00 (-4.26,-2.77)

Table EC.3 Poisson regression analysis for estimating number of arrivals of severe non-stroke patients

+ biµi

[
(1− dii)hi(xi, bi− 1) + diihi(xi− 1, bi) +

∑
j 6=i

dij

(
α

µj
rj −πjWj

∗z′j

)]

+
∑
k 6=i

bkµk

[
(1− dkk)

(
− α

µk
r′k

)
+ dki

(
hi(xi− 1, bi + 1)−hi(xi, bi)

)

− dkk (πkWk
∗z′k) +

∑
j 6=i,k

dkj

(
α

µj
rj −πjWj

∗z′j

)]
s.t.:∑

k 6=i

xk ≤K −xi,
∑
k 6=i

bk ≤B− bi,

ak ≤B− bi, xi−K + 1≤ ak + tk ≤ 1, ∀k 6= i,
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Patient Type Estimate Std. Error Z-Value P-Value 95% CI

Severe Stroke

Month of the Year

February 0.30 0.45 0.66 0.51 (-0.58,1.18)

March 0.20 0.45 0.43 0.67 (-0.69,1.08)

April -0.22 0.50 -0.44 0.66 (-1.21,0.77)

May 0.10 0.46 0.21 0.83 (-0.80,1.00)

June 0.14 0.46 0.30 0.77 (-0.76,1.04)

July 0.36 0.43 0.83 0.41 (-0.49,1.21)

August -0.59 0.56 -1.06 0.29 (-1.68,0.50)

September 0.32 0.44 0.72 0.47 (-0.55,1.18)

October 0.20 0.45 0.43 0.66 (-0.69,1.08)

November 0.23 0.45 0.51 0.61 (-0.65,1.11)

December 0.37 0.43 0.85 0.40 (-0.48,1.22)

Day of the Week

Tuesday -0.49 0.38 -1.28 0.20 (-1.24,0.26)

Wednesday 0.20 0.32 0.64 0.52 (-0.42,0.83)

Thursday -0.06 0.34 -0.18 0.86 (-0.72,0.60)

Friday -0.40 0.37 -1.07 0.28 (-1.13,0.33)

Saturday 0.25 0.32 0.81 0.42 (-0.36,0.87)

Sunday 0.11 0.32 0.34 0.74 (-0.53,0.75)

Hour of the Day

6 a.m.–12 p.m. -0.11 0.24 -0.47 0.64 (-0.58,0.36)

12 p.m.–6 p.m. -0.44 0.26 -1.66 0.10 (-0.95,0.08)

6 p.m.–12 a.m. -0.24 0.25 -0.98 0.33 (-0.73,0.24)

Constant -3.51 0.42 -8.36 0.00 (-4.34,-2.69)

Table EC.4 Poisson regression analysis for estimating number of arrivals of severe stroke patients

n∑
j=1

dkj ≤ 1, dki ≤ xi, ∀k,

2fk ≤ zk + (1− ak− tk)≤ fk + 1, ∀k 6= i,

2f ′k ≤ rk + ak ≤ f ′k + 1, ∀k 6= i,

xk ≥ zkL∗k, xk ≤ (1− zk)(L∗k− 1) + zkM, ∀k 6= i,

xk ≥ z′k(L∗k + 1), xk ≤ (1− z′k)L∗k + z′kM, ∀k 6= i,

bk ≥ rkb̃∗k, bk ≤ (1− rk)(b̃∗k− 1) + rkM, ∀k 6= i,

bk ≥ r′k(b̃∗k + 1), bk ≤ (1− r′k)b̃∗k + r′kM, ∀k 6= i,

xk and bk are integer, ∀k 6= i,

ak, tk, zk, z
′
k, rk, r

′
k, fk, f

′
k are binary, ∀k 6= i,
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dkj is binary, ∀k, j.

We still have some non-linear terms in the objective function of MIP. Hence, we define the

following binary variables to transform it to a linear function:

sij = dijrj 2sij ≤ dij + rj ≤ sij + 1, ∀j 6= i,

s′ij = dijz
′
j 2s′ij ≤ dij + z′j ≤ s′ij + 1, ∀j 6= i,

ek = dkkr
′
k 2ek ≤ dkk + r′k ≤ ek + 1, ∀k 6= i,

vk = dkkz
′
k 2vk ≤ dkk + z′k ≤ vk + 1, ∀k 6= i,

ukj = dkjrj 2ukj ≤ dkj + rj ≤ ukj + 1, ∀k 6= i, j 6= i, k,

ykj = dkjz
′
j 2ykj ≤ dkj + z′j ≤ ykj + 1, ∀k 6= i, j 6= i, k.

The last set of variables is:

mk = bkr
′
k mk ≤ r′k(B− bi),mk ≤ bk, (r′k− 1)M + bk ≤mk, ∀k 6= i,

m′k = bkek m′k ≤ ek(B− bi),m′k ≤ bk, (ek− 1)M + bk ≤m′k, ∀k 6= i,

nki = bkdki nki ≤ dki(B− bi), nki ≤ bk, (dki− 1)M + bk ≤ nki, ∀k 6= i,

ok = bkvk ok ≤ vk(B− bi), ok ≤ bk, (vk− 1)M + bk ≤ ok, ∀k 6= i,

pkj = bkukj pkj ≤ ukj(B− bi), pkj ≤ bk, (ukj − 1)M + bk ≤ pkj, ∀k 6= i, j 6= i, k,

qkj = bkykj qkj ≤ ykj(B− bi), qkj ≤ bk, , (qkj − 1)M + bk ≤ qkj, ∀k 6= i, j 6= i, k.

By taking all these steps, we will have a mixed-integer program with linear constraints and linear

objective function as follows:

min
∑
k 6=i

πkxk +
∑
k 6=i

λk

[
κktk +πkWk

∗fk +
α

µk
f ′k

]

+ biµi

[
(1− dii)hi(xi, bi− 1) + diihi(xi− 1, bi) +

∑
j 6=i

(
α

µj
sij −πjWj

∗s′ij

)]

+
∑
k 6=i

[
α(m′k−mk) +µknki

(
hi(xi− 1, bi + 1)−hi(xi, bi)

)
−µkokπkWk

∗

+
∑
j 6=i,k

µk

(
α

µj
pkj −πjWj

∗qkj

)]
s.t.:∑

k 6=i

xk ≤K −xi,
∑
k 6=i

bk ≤B− bi,
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ak ≤B− bi, xi−K + 1≤ ak + tk ≤ 1, ∀k 6= i,
n∑
j=1

dkj ≤ 1, dki ≤ xi, ∀k,

2fk ≤ zk + (1− ak− tk)≤ fk + 1, ∀k 6= i,

2f ′k ≤ rk + ak ≤ f ′k + 1, ∀k 6= i,

xk ≥ zkL∗k, xk ≤ (1− zk)(L∗k− 1) + zkM, ∀k 6= i,

xk ≥ z′k(L∗k + 1), xk ≤ (1− z′k)L∗k + z′kM, ∀k 6= i,

bk ≥ rkb̃∗k, bk ≤ (1− rk)(b̃∗k− 1) + rkM, ∀k 6= i,

bk ≥ r′k(b̃∗k + 1), bk ≤ (1− r′k)b̃∗k + r′kM, ∀k 6= i,

2sij ≤ dij + rj ≤ sij + 1, ∀j 6= i,

2s′ij ≤ dij + z′j ≤ s′ij + 1, ∀j 6= i,

2ek ≤ dkk + r′k ≤ ek + 1, ∀k 6= i,

2vk ≤ dkk + z′k ≤ vk + 1, ∀k 6= i,

2ukj ≤ dkj + rj ≤ ukj + 1, ∀k 6= i,∀j 6= i, k,

2ykj ≤ dkj + z′j ≤ ykj + 1, ∀k 6= i,∀j 6= i, k,

mk ≤ r′k(B− bi),mk ≤ bk, (r′k− 1)M + bk ≤mk, ∀k 6= i,

m′k ≤ ek(B− bi),m′k ≤ bk, (ek− 1)M + bk ≤m′k, ∀k 6= i,

nki ≤ dki(B− bi), nki ≤ bk, (dki− 1)M + bk ≤ nki, ∀k 6= i,

ok ≤ vk(B− bi), ok ≤ bk, (vk− 1)M + bk ≤ ok, ∀k 6= i,

pkj ≤ ukj(B− bi), pkj ≤ bk, (ukj − 1)M + bk ≤ pkj, ∀k 6= i,∀j 6= i, k,

qkj ≤ ykj(B− bi), qkj ≤ bk, , (qkj − 1)M + bk ≤ qkj, ∀k 6= i,∀j 6= i, k,

xk, bk,mk,m
′
k, ok, nki, pkj and qkj are non-negative integer, ∀k 6= i,∀j 6= i, k,

ak, tk, zk, z
′
k, rk, r

′
k, fk, f

′
k, ek, vk, ukj, ykj are binary, ∀k 6= i,

dkj is binary, ∀k, j,

sij, s
′
ij are binary, ∀j 6= i.

EC.4. An example of non-linear cost functions

We provide an example of the convex piece-wise linear functions that were used in the analysis of

Section 7.7. This example is dedicated to describing the waiting cost function for the mild stroke

patients. However, the function structure for other patient types is similar. As we explained in

that section the slope of the waiting cost function increases every three-hour interval and remains

constant after the transfer threshold, which is 48 hours for the mild stroke patients. In Table EC.5,
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we present the slopes in each time interval according to which the waiting cost is incurred. Note

that the slope increases in equal increments up to one day (24 hours) of waiting. After that, the

patient’s health status presumably deteriorates even faster so that the increments in the slopes

also increases at higher rates.

Wait Time Waiting Cost Wait Time Waiting Cost

Interval (Hours) per Hour Interval (Hours) per Hour

1–3 1.5 25–27 4.2

4–6 1.8 28–30 4.8

7–9 2.1 31–33 5.7

10–12 2.4 34–36 6.6

13–15 2.7 37–39 7.5

16–18 3.0 40–42 8.4

19–21 3.3 43–45 10.2

22–24 3.6 ≥ 46 12

Table EC.5 An example of piece-wise linear function for patient waiting cost

For the purpose of comparison in Section 7.7 we have also taken another consideration into

account when choosing these slopes. If we fit a linear function with zero intercept to the piecewise

linear function described in Table EC.5 we will have the slope of the fitted line equal to 3.75 per

hour. This is equivalent to waiting cost of 90 per day, which is the cost of waiting for the mild

stroke patients in the case of linear costs. It is also noteworthy that when we assume non-linear

functions for the cost of waiting we need to adjust the transfer cost accordingly. In this example,

for the mild stroke patients the cost of waiting 48 hours according to the piece-wise linear function

described in Table EC.5 is 239.40. This number should be considered as the transfer cost in this

situation instead of 180 that was used when the costs were incurred linearly.
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