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Approximate linear programs have been used extensively to approximately solve stochastic dynamic pro-

grams that suffer from the well-known curse of dimensionality. Due to canonical results establishing the

optimality of stationary value functions and policies for infinite-horizon dynamic programs, the literature

has largely focused on approximation architectures that are stationary over time. In a departure from this

literature, we apply a non-stationary approximation architecture to an infinite-dimensional linear program-

ming formulation of the stochastic dynamic programs. We solve the resulting problems using a finite-horizon

approximation. Such finite-horizon approximations are common in the theoretical analysis of infinite-horizon

linear programs, but have not been considered in the approximate linear programming literature. We illus-

trate the approach on a rolling-horizon capacity allocation problem using an affine approximation architec-

ture. We obtain three main results. First, non-stationary approximations can substantially improve upper

bounds on the optimal revenue. Second, the upper bounds from the finite-horizon approximation are mono-

tonically decreasing as the horizon length increases, and converge to the upper bound from the infinite-

horizon approximation. Finally, the improvement does not come at the expense of tractability, as the resulting

approximate linear programs admit compact representations and can be solved efficiently. The resulting

approximations also produce strong heuristic policies and significantly reduce optimality gaps in numerical

experiments.

History : January 14, 2022

1. Introduction

Linear programming-based approximate dynamic programming is a popular method to approxi-

mately solve stochastic dynamic programs that suffer from the well-known curse of dimensionality.

A successful implementation of the method requires the choice of an appropriate approximation

architecture. Typically, the value function is approximated by a weighted sum of pre-selected basis

functions, an approach introduced by Schweitzer and Seidmann (1985) and theoretically analyzed

in the seminal work of de Farias and Van Roy (2003). The method entails solving a large-scale

linear program, often called the approximate linear program (ALP), to determine the weights on

the basis functions.

Much of the existing literature on ALPs dealing with infinite-horizon dynamic programs assumes

that the weights are stationary; that is, the weights are time-independent and constant across time
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periods; see, e.g., Adelman and Mersereau (2008) and Diamant et al. (2018) . The stationarity

restriction can be justified by canonical results for infinite-horizon dynamic programs. Specifically,

for a broad class of practically relevant infinite-horizon stochastic dynamic programs, it is known

that there exist optimal value functions and optimal control policies that are stationary; see, e.g.,

Puterman (1994).

However, the optimality of stationary value functions and policies only applies to exact dynamic

programming. Imposing stationarity restrictions on an approximation architecture (which itself

restricts the value function) will necessarily lead to a weaker approximation. It is trivial to show

that requiring the weights to be the same across periods would lead to a weaker bound compared

with an approximation without such restrictions. This consideration motivates us to consider an

infinite-dimensional formulation of the stochastic dynamic program, where the value functions are

time-dependent, and investigate both analytically and numerically the bound improvements in

comparison to a time-independent formulation. Applying the approximation architecture to this

formulation results in an infinite-dimensional ALP.

We solve the infinite-dimensional ALP using a so-called finite-horizon approximation, where the

weights are time-dependent within a chosen time horizon and are stationary afterwards. The use

of such finite-horizon approximations for infinite-dimensional linear programming problems is well-

established in the literature (Grinold 1977, Chand et al. 2002, Ghate 2010), and we note that this

approximation is similar to the finite-horizon approximations in the analysis of infinite-horizon

discounted stochastic dynamic programming problems. In both settings, the key to the analysis is

the vanishing difference in value functions when the horizon length is sufficiently large.

We illustrate our approach on a rolling-horizon capacity allocation problem. In our setting, a

single service provider with finite daily capacity can book requests from multiple customer classes

at most M days in advance, where M is the length of the booking horizon. Customers can be

booked in any of the M days, each with a corresponding reward. At the beginning of each day, the

service provider observes both the number of bookings in the planning horizon and the incoming

demand. The provider decides how to allocate the incoming demand to different days in the booking

horizon, and unallocated demand is lost. The objective of the service provider is to maximize

total discounted revenue over the infinite time horizon, and the problem can be formulated as a

discrete-time infinite-horizon discounted reward Markov decision process.

The problem we consider is faced by many businesses that allocate limited capacity to different

types of customers over time. In such settings, it is customary to satisfy demand using capacity on

different days.
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One example is medical appointment scheduling, where patients requesting appointments can be

placed in different days depending on capacity availability. Most patients have a time preference for

their appointments, therefore the “rewards” from different days can differ. In appointment schedul-

ing, the key trade-off is between allocating arriving customers to different dates taking into account

their preferences and rejecting them to reserve capacity for future customers with potentially higher

values. In this context, rolling-horizon dynamic programming formulations are adopted in both

Patrick et al. (2008) and Liu et al. (2010), among others. Rohleder and Klassen (2002) conduct a

simulation study for rolling-horizon appointment scheduling problems. Our framework can also be

applied to lead-time quotation in so-called available-to-promise systems, which allow manufacturers

to dynamically (re)allocate resources to promise and fulfill customer orders; see Reindorp and Fu

(2011). Other applications include scheduling (Ovacik and Uzsoy 1995) and production planning

(Sridharan et al. 1987), even though these applications have additional details not considered in

our problem formulation. More broadly, rolling-horizon decision making is very popular in practice

and many practical problems can be formulated as rolling-horizon dynamic programs. A relevant

literature review is given by Chand et al. (2002), and an early theoretical treatment is offered by

Sethi and Sorger (1991). Finally, our overall approach can also be used in other applications that

involve decision making over an infinite horizon, such as the multi-class queueing and inventory

control problems discussed in Brown and Haugh (2017) or dynamic product promotion (Ye et al.

2018).

Even though we consider a revenue maximization objective in the current paper, our model can

also handle cost minimization objectives by treating cost as negative revenue. For appointment

scheduling problems, both revenue maximization and cost minimization objectives have been con-

sidered in the literature; see, e.g., Liu et al. (2010) and Patrick et al. (2008). The paper by Patrick

et al. (2008) is particularly relevant. The motivation of Patrick et al. (2008) is a multi-priority

scheduling problem for image scanning facilities where patients have different target service dates.

They point out that the problem formulation is quite generic and can be applied to many other

healthcare settings as well. Our model captures a stylized version of the problem they consider,

largely to streamline exposition and emphasize key insights. Even though we ignore certain oper-

ational features such as demand carryover or surge capacity, our framework can be extended to

incorporate these as well.

We apply a finite-horizon approximation together with an affine approximation, where the value

function is represented by an affine function of the state vector. In contrast to stationary approxi-

mations that are customary in most of the existing literature, the finite-horizon approximation can
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capture certain time dynamics. We show that, as a result, the approximation produces a tighter

upper bound on the optimal revenue. Moreover, we introduce novel techniques to construct lower

bounds for a given horizon length, and derive analytical expressions for the gap between these

upper and lower bounds. This allows us to establish convergence to an infinite-horizon approxi-

mation bound for moderate horizon lengths, and can help guide the selection of an appropriate

horizon length. In addition, we also show that the finite-horizon approximation enables heuristic

policies that can improve revenue performance. In these heuristic control methods, the ALP is

solved starting from the current state. Then, we probabilistically select an allocation that is used in

the current period. This process is repeated in the following periods. This type of heuristic control

policy can be viewed as a form of model predictive control (Mayne 2014); see also the extensive

discussion in Bertsekas (2001). We perform a numerical study to verify our theoretical results and

to investigate the performance of heuristic policies that are based on the finite-horizon approx-

imation. Our experiments confirm that the finite horizon approximation produces both tighter

bounds and stronger policies than the stationary affine approximation. Overall, the combination

of those improvements leads to approximations that drastically reduce optimality gaps relative to

the stationary affine approximation.

An important contribution of our work is that these improvements do not come at the expense

of tractability. Specifically, we derive compact reduced formulations for the resulting ALPs, whose

dimensions are linear in the problem inputs. The size of the resulting ALPs is proportional to the

length of the booking horizon M , the number of customer classes N , and the length of the planning

horizon T of our choice. When T = 0, the finite-horizon approximation reduces to the stationary

affine approximation. This is related to the recent work of Tong and Topaloglu (2013) and Vossen

and Zhang (2015), which shows that certain ALPs for network revenue management problems

(Adelman 2007) admit compact representations. However, the problem setup is quite different in

the present paper. The network revenue management problem is a finite-horizon problem that

assumes at most one customer arrival in each period, while the problem in this paper is formulated

as an infinite-horizon problem with “block” demand from multiple customer classes. Block demand

models are typically only considered for single-resource problems in the revenue management liter-

ature (Brumelle and McGill 1993, Robinson 1995). Therefore, the state dynamics and action space

are more complicated than the corresponding dynamic programs in network revenue management.

While our approach is closely related to the fluid optimization approach proposed in Bertsimas

and Mǐsić (2016), our results extend their work along several dimensions. First, Bertsimas and

Mǐsić (2016) consider decomposable MDPs with small action spaces, whereas our framework in
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principle applies to any infinite-horizon MDP. Second, the fluid approximation in Bertsimas and

Mǐsić (2016) can be viewed as a non-stationary separable piecewise linear value function approx-

imation, while our framework can be applied in conjunction with any functional approximation

scheme. Moreover, the convergence of the finite-horizon approximation of the infinite-horizon fluid

approximation is only observed empirically in the numerical study in Bertsimas and Mǐsić (2016),

while we derive analytical bounds that provide strong support for fast convergence. In addition, we

propose more general methods for constructing heuristic control policies. Overall, our work there-

fore generates several new insights on the benefits of finite-horizon approximations for complex

infinite-dimensional dynamic programs.

A natural question is how finite-horizon approximations compare with stationary approxima-

tions that use a stronger functional approximation. One powerful functional approximation is the

separable piecewise linear approximation; see, e.g., Farias and Van Roy (2007) and Meissner and

Strauss (2012). Instead of a constant marginal value for each available booking and arriving cus-

tomer in each period in the affine approximation, the separable piecewise linear approximation

considers marginal values that depend on the booking level and number of arriving customers. The

resulting ALPs are much larger in comparison to the affine ALPs, and tend to be much harder

to solve. We conduct a numerical study to compare affine finite-horizon approximation and the

stationary separable piecewise linear approximation (noting that finite-horizon separable piecewise

linear approximation are computationally prohibitive); the details are relegated to Appendix A.

Our numerical study shows that the affine finite-horizon approximation significantly outperforms

the separable piecewise linear approximation, in that it produces stronger bounds (except for very

small problem instances) and solves to optimality orders of magnitude faster. This further illus-

trates a key benefit of using finite horizon approximations: instead of using stronger functional

approximations in a stationary setting (which can still be computationally prohibitive), using a

finite horizon approximation based on simpler approximation architectures (which are more likely

to admit compact reformulations) can lead to improved performance.

The remainder of the paper is organized as follows. Section 2 introduces the model formulation.

Section 3 presents the framework of linear programming based approximate dynamic programming,

and describes the key ideas behind our approach. In Section 4, we apply these concepts using an

affine value approximation and derive reduced formulations for the resulting ALPs. Section 5 con-

siders the bound improvements from the finite horizon approximation. Section 6 proposes heuristic

policy alternatives from the finite horizon approximation. Section 7 reports numerical results and

Section 8 concludes. Appendix A reports a numerical comparison between the (stationary) sep-

arable piecewise linear approximation and the finite horizon affine approximation. Appendix B

contains all technical proofs.
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2. The Rolling-Horizon Capacity Allocation Problem

We consider a rolling-horizon capacity allocation problem, where each customer can reserve a unit of

capacity at mostM days in advance. We refer toM as the booking horizon. The capacity on each day

is C units, and customer requests can come from N customer classes. For notational convenience,

we introduce the index sets M= {1, . . . ,M}, N = {1, . . . ,N}, and M− = {1, . . . ,M − 1}.

At the beginning of each day, a scheduler observes the number of bookings over the M -day book-

ing horizon, denoted by the vector b= (b1, . . . , bM), as well as the demand vector d= (d1, . . . , dN).

The demand from each class is independent and follows a discrete distribution with bounded sup-

port. The upper bound on demand for each class is D. The distribution of class-n demand is given

by pn(·) for each n. It follows that the joint distribution of demand vector d is

p(d) =
∏
n∈N

pn(dn).

Given this information, the scheduler decides upon an allocation a ∈ ZM×N+ of the remaining

capacity to the incoming demand, where Z+ denotes the set of nonnegative integers. The reward is

linear, in that each unit of allocated class-n demand to day m will provide a reward vm,n. Therefore,

the total reward for the allocation a is r(a) =
∑

m∈M
∑

n∈N vm,nam,n. After allocating the demand,

the number of bookings at the beginning of the next day will be(
b2 +

∑
n∈N

a2,n, . . . , bM +
∑
n∈N

aM,n,0

)
.

The expression above reflects the rolling horizon, as day m in the new booking horizon corresponds

to day m+ 1 on the previous day. Since day M just entered the planning horizon, the number of

bookings on day M equals 0.

As mentioned earlier, the key trade-off is between allocating arriving customers to different dates

taking into account their preferences and rejecting them to reserve capacity for future customers

with potentially higher values. We formulate the problem as an infinite-horizon discrete-time dis-

counted Markov decision process (MDP) to systematically account for this tradeoff. We use β ∈

(0,1) to denote the per period discount factor. The state space of this MDP is

S = {(b,d)∈ZM+N−1
+ : bm ≤C, ∀m∈M−, dn ≤D, ∀n∈N}.

We omit the number of bookings on day M because it is always 0. However, we adopt the notational

convention bM ≡ 0 to simplify subsequent development. The action space reflects how the incoming
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requests are managed, where each request is either allocated a unit of capacity in the booking

horizon or rejected. Thus, the set of feasible actions in state (b,d) is

A(b,d) =

{
a∈ZM×N+ :

∑
m∈M

am,n ≤ dn, ∀n∈N ,
∑
n∈N

am,n ≤C − bm, ∀m∈M

}
.

For notational simplicity, we also introduce the set of feasible state-action pairs

X = {(b,d,a) : (b,d)∈ S,a∈A(b,d)} .

Finally, the state transition probabilities can be stated as

p(b′,d′|b,d,a) =

{
p(d′), if b′m = bm+1 +

∑N

n=1 am+1,nfor m∈M−,

0, otherwise,
∀(b′,d′)∈ S, (b,d,a)∈X .

With these definitions, the dynamic programming optimality equations can be stated as

J(b,d) = max
a∈A(b,d)

r(a) +β
∑

(b′,d′)∈S

p(b′,d′|b,d,a)J(b′,d′)

 , ∀(b,d)∈ S. (1)

The dynamic program (1) has an (M+N−1)-dimensional state space and an (M×N)-dimensional

action space, and cannot be easily solved by standard solution methods such as value iteration

or policy iteration. In the remainder of the paper, we focus on the linear programming-based

approximate dynamic programming approaches to solve the problem.

3. General Framework

In this section, we discuss the general ideas behind our approach. Section 3.1 introduces approxi-

mate linear programming. In the existing literature, ALPs typically use stationary value function

approximations that are time-independent for infinite-horizon problems. Section 3.2 introduces

non-stationary value function approximations. Section 3.3 proposes a finite-horizon approximation

as a way to implement non-stationary value function approximations.

3.1 Approximate Linear Programming

Let α be a vector of non-negative weights corresponding to each state (b,d)∈ S, which are called

state-relevance weights in the literature (de Farias and Van Roy 2003). The dynamic program (1)

can be equivalently formulated as the following linear program:

Pα : zα = min
ϑ(·)

∑
(b,d)∈S

α(b,d)ϑ(b,d)

s.t. ϑ(b,d) ≥ r(a) +β
∑

(b′,d′)∈S

p(b′,d′|b,d,a)ϑ(b′,d′), ∀(b,d,a)∈X .
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In the formulation above, the decision variables are ϑ(b,d) for all (b,d) ∈ S. Without loss of

generality, we can assume that the state-relevance weights α sum to one. As a result, we can

interpret these weights as a distribution over the initial states. Thus, the optimal objective value

of Pα is the weighted value function; that is zα =
∑

(b,d)∈S α(b,d)J(b,d).

The linear program Pα suffers from the same curse of dimensionality as the original dynamic

programming formulation. It is intractable for moderate M and N due to the potentially huge

number of decision variables and constraints. To achieve tractability, it is common to resort to

approximately solving the linear program by imposing a restriction on the value function. This can

be done by representing the value function ϑ(b,d) using a collection of weighted basis functions.

Consider a set of basis functions φk : S →R for k ∈K, where K is some index set, and take

ϑ(b,d)≈ θ+
∑
k∈K

Vkφk(b,d), ∀(b,d)∈ S, (2)

where Vk is a parameter that weighs basis function φk(·), and θ is a constant offset.

Substituting (2) into Pα yields a linear program over the parameters θ and Vk, which is the

so-called approximate linear program (ALP). The optimal objective value of the ALP provides

an upper bound on the optimal objective value of Pα, because the value function approximation

restricts the feasible solutions of Pα. Compared to Pα, the number of decision variables in the

ALP is substantially smaller when a moderate number of basis functions are used, though the

number of constraints is still exponential in both the number of customer classes and the number

of days in the booking horizon. This suggests that the dual of the ALP can be solved using

column generation methods (Desrosiers and Lübbecke 2005), though alternative approaches such

as constraint sampling (de Farias and Van Roy 2004) have also been proposed.

Within the context of infinite-horizon dynamic programming problems, the ALP approach out-

lined above has received considerable attention (e.g., de Farias and Van Roy 2003, Adelman and

Mersereau 2008, Patrick et al. 2008, Diamant et al. 2018). However, it is important to note that this

approach implies an a-priori restriction to stationary value function approximations. This restric-

tion appears natural, given the optimality of stationary value functions in the original dynamic

programming formulation. Yet, it is not clear that the restriction to stationary value functions

is necessary or desirable when approximating the dynamic program. We will show below that

removing the stationarity restriction can improve the strength of the approximation.

3.2 Non-Stationary Value Function Approximations

To apply non-stationary value function approximations, we first extend Pα to an infinite-

dimensional linear programming formulation that corresponds to the dynamic programming recur-

sion, which is given by
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Pα
∞ : zα∞ = min

{ϑt(·)}∀t∈Z+

∑
(b,d)∈S

α(b,d)ϑ0(b,d)

s.t. ϑt(b,d) ≥ r(a) +β
∑

(b′,d′)∈S

p(b′,d′|b,d,a)ϑt+1(b′,d′), ∀(b,d,a)∈X , t∈Z+.

Observe that ϑt(b,d) will be time-independent at optimality in this linear program, as it is the

optimal value function for a stationary infinite-horizon discounted dynamic program. Therefore,

ϑt(b,d) = ϑ(b,d) for all (b,d)∈ S and t∈Z+, and Pα
∞ and Pα are equivalent in that zα∞ = zα.

To streamline our exposition, we further make two modifications to this formulation. First, we

consider a version of Pα
∞ where the weights α are concentrated on a given initial state (b0,d0).

This restriction is natural in the finite-horizon approximation we introduce later. In addition, we

scale the decision variables ϑt(·) by a factor β−t for each t to simplify notation. The formulation

after applying the two modifications is given by

P∞(b0,d0) : z∞(b0,d0) = min
{ϑt(·)}∀t∈Z+

ϑ0(b0,d0)

s.t. ϑt(b,d) ≥ βtr(a) +
∑

(b′,d′)∈S

p(b′,d′|b,d,a)ϑt+1(b′,d′),

∀(b,d,a)∈X , t∈Z+.

The natural dual (Romeijn et al. 1992) of P∞(b0,d0) is given by

D∞(b0,d0) : max
{πt(·)}∀t∈Z+

∞∑
t=0

∑
(b,d,a)∈X

βtr(a)πt(b,d,a)

s.t.
∑

a∈A(b,d)

πt(b,d,a) =


1{(b,d)=(b0,d0)}, if t= 0,∑
(b′,d′,a′)∈X

p(b,d|b′,d′,a′)πt−1(b′,d′,a′), if t > 0,

∀(b,d)∈ S, t∈Z+,

πt ≥ 0, ∀t∈Z+.

In general, infinite-dimensional linear programming problems can pose a number of technical chal-

lenges; the objective function is not guaranteed to converge, and strong or even weak duality may

fail to hold. However, it is possible to verify that weak duality, complementary slackness, and

strong duality hold in our setting by viewing P∞(b0,d0) as a special case of the infinite linear

programming formulation proposed for a class of nonstationary infinite-horizon Markov decision

processes in Ghate and Smith (2013).

Using the same set of basis functions φk over the index set K as in (2), we can construct a

time-dependent value function approximation

ϑt(b,d)≈ θt +
∑
k∈K

Vt,kφk(b,d), ∀(b,d)∈ S, t∈Z+. (3)
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Plugging (3) into P∞(b0,d0) yields the ALP

ALP∞(b0,d0) :

z̃∞(b0,d0) = min
θ,V

θ0 +
∑
k∈K

V0,kφk(b0,d0)

s.t. θt− θt+1 +
∑
k∈K

Vt,kφk(b,d)−
∑

(b′,d′)∈S

p(b′,d′|b,d,a)Vt+1,kφk(b
′,d′)

 ≥ βtr(a),

∀(b,d,a)∈X , t∈Z+.

We will refer to z̃∞(b0,d0) as the infinite-horizon approximation bound. The corresponding dual

problem is

ALD∞(b0,d0) :

max
{πt(·)}∀t∈Z+

∞∑
t=0

∑
(b,d,a)∈X

βtr(a)πt(b,d,a)

s.t.
∑

(b,d,a)∈X

πt(b,d,a) =


1, if t= 0,∑
(b,d,a)∈X

πt−1(b,d,a), if t > 0,
∀t∈Z+,

∑
(b,d,a)∈X

φk(b,d)πt(b,d,a) =


φk(b0,d0), if t= 0,∑

(b,d)∈S,
(b′,d′,a′)∈X

φk(b,d)p(b,d|b′,d′,a′)πt−1(b′,d′,a′), if t > 0,

∀k ∈K, t∈Z+,

πt ≥ 0 ∀t∈Z+.

The decision variables πt(b,d,a) in ALD∞(b0,d0) can be interpreted as approximate state-

action probabilities (for further discussion, see Adelman and Mersereau 2008). Thus, the term∑
(b,d,a)∈X φk(b,d)πt(b,d,a) can be interpreted as the expected value of the basis function at the

beginning of period t, and the constraints in ALD∞(b0,d0) require that the expectations of the

basis functions with respect to the state distribution are maintained over time.

It is worth noting that applying functional approximations to P∞(b0,d0) where the weights

are concentrated on a given initial state (b0,d0) can lead to tighter bounds relative to applying

functional approximations to Pα
∞ directly. Let z̃α∞ be the optimal objective value of the infinite-

horizon ALP formulation that applies (3) to Pα
∞, which we do not explicitly state for brevity. A

standard result in stochastic programming implies that z̃α∞ ≥Eα[z̃∞(b,d)], where the expectation

can be obtained using a sample average approximation (Shapiro 2003). This suggests that solving

ALP∞(b0,d0) or ALD∞(b0,d0) for randomly sampled initial states from the distribution α can

produce a tighter bound, although this sample average bound is subject to statistical error and

the inequality is not guaranteed to hold with a finite sample.
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3.3 The Finite-Horizon Approximation

Solving the ALPs from the non-stationary value function approximations remains challenging.

While the value function approximation does reduce the number of decision variables per time

period, the ALPs still have an infinite number of variables and constraints. The predominant

approach to solving infinite dimensional linear programs is based on using finite-horizon approx-

imations that truncate the formulation beyond finitely many variables and constraints; see, e.g.,

Grinold (1977), Bean and Smith (1984), and Schochetman and Smith (1992).

We follow the approach in Grinold (1977), and start by defining a planning horizon T ≥ 0. We also

introduce the set notations T = {0, . . . , T} and T − = {0, . . . , T −1}. For any t≥ T , take θt = βt−T θT

and Vt,k = βt−TVT,k for all k ∈K; i.e., for all t > T , θt and Vt equal θT and VT , respectively, before

scaling. Plugging this into ALP∞(b0,d0) yields the linear program

ALPT (b0,d0) :

z̃T (b0,d0) = min
θ,V

θ0 +
∑
k∈K

V0,kφk(b0,d0)

s.t. θt− θt+1 +
∑
k∈K

Vt,kφk(b,d)−
∑

(b′,d′)∈S

p(b′,d′|b,d,a)Vt+1,kφk(b
′,d′)

 ≥ βtr(a),

∀(b,d,a)∈X , t∈ T −,

(1−β)θT +
∑
k∈K

VT,kφk(b,d)−β
∑

(b′,d′)∈S

p(b′,d′|b,d,a)VT,kφk(b
′,d′)

≥ βT r(a),

∀(b,d,a)∈X .

The corresponding dual is

ALDT (b0,d0) :

max
{πt(·)}∀t∈Z+

∑
t∈T ,

(b,d,a)∈X

βtr(a)πt(b,d,a)

s.t. (1−1{t=T}β)
∑

(b,d,a)∈X

πt(b,d,a) =


1, if t= 0,∑
(b,d,a)∈X

πt−1(b,d,a), if t > 0,
∀t∈ T ,

∑
(b,d,a)∈X

φk(b,d)πt(b,d,a)−1{t=T}β
∑

(b,d)∈S,
(b′,d′,a′)∈X

φk(b,d)p(b,d|b′,d′,a′)πt(b′,d′,a′)
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=


φk(b0,d0), if t= 0,∑

(b,d)∈S,
(b′,d′,a′)∈X

φk(b,d)p(b,d|b′,d′,a′)πt−1(b′,d′,a′), if t > 0,

∀k ∈K, t∈ T ,

πt ≥ 0, ∀t∈ T .

We refer to ALPT (b0,d0) as the finite-horizon ALP. Note that the decision variables πt(b,d,a)

in ALDT (b0,d0) can again be interpreted as approximate state-action probabilities for period

t ∈ T −; however, the decision variables πT (b,d,a) have an interpretation as the total discounted

time (from period T ) spent in state (b,d) taking action a.

Observe that, when T = 0, ALPT (b0,d0) is equivalent to the stationary approximation that

results from plugging the value function approximation (2) into Pα. Grinold (1977) shows that the

finite horizon approximation converges as the planning horizon T increases, that is,

lim
T→∞

z̃T (b0,d0) = z̃∞(b0,d0).

Moreover, Grinold also shows that this convergence is monotone, that is, z̃T+1(b0,d0)≤ z̃T (b0,d0)

for all T ≥ 0. Given that z̃∞(b0,d0) provides an upper bound on the stochastic dynamic program,

that is, z̃∞(b0,d0)≥ z∞(b0,d0), the finite-horizon approximation will therefore produce an upper

bound for any planning horizon T . We summarize these results in the following proposition.

Proposition 1 (Grinold, 1977). For any initial state (b0,d0) ∈ S, z̃T (b0,d0) decreases mono-

tonically in T and converges to a limit z̃∞(b0,d0), which is an upper bound on z∞(b0,d0).

Solving the finite-horizon ALPs can still pose a challenge. A common approach is to solve the

dual problem ALDT (b0,d0) by a column generation procedure, which uses only a small subset

of the decision variables and adds more variables only when needed. This, however, can present a

computational burden even for stationary approximations (i.e., when T = 0). In the next section,

we address this issue and construct a compact formulation that is equivalent to the finite-horizon

ALP when considering the affine value function approximation.

4. Affine Finite-Horizon Approximations

In this section, we consider the affine value function approximation

ϑt(b,d)≈ θt +
∑

m∈M−
Vt,mbm +

∑
n∈N

Wt,ndn, ∀(b,d)∈ S, t∈ T . (4)

Here, Vt,m represents the total discounted value of a booking on day m, and Wt,n represents the

value of an additional class-n customer. As before, θt represents an adjusting constant.
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Using (4) as the functional approximation in ALPT (b0,d0), we obtain

AFPT (b0,d0) :

z̃T (b0,d0) = min
θ,V,W

θ0 +
∑

m∈M−
b0,mV0,m +

∑
n∈N

d0,nW0,n

s.t. θt− θt+1 +
∑

m∈M−

(
bmVt,m− (bm+1 +

∑
n∈N

am+1,n)Vt+1,m

)
+
∑
n∈N

(
dnWt,n− d̄nWt+1,n

)
≥ βtr(a),

∀(b,d,a)∈X , t∈ T −,

(1−β)θT +
∑

m∈M−

(
bm−β(bm+1 +

∑
n∈N

am+1,n)

)
VT,m

+
∑
n∈N

(
dn−βd̄n

)
WT,n ≥ βT r(a),

∀(b,d,a)∈X .

Here, d̄n is the expected number of arrivals for class-n customers during a period. The corresponding

dual problem is

AFDT (b0,d0) :

max
{πt(·)}∀t∈Z+

∑
t∈T ,

(b,d,a)∈X

βtr(a)πt(b,d,a)

s.t. (1−1{t=T}β)
∑

(b,d,a)∈X

πt(b,d,a) =


1, if t= 0,∑
(b,d,a)∈X

πt−1(b,d,a), if t > 0,
∀t∈ T , (5)

∑
(b,d,a)∈X

(
bm−1{t=T}β(bm+1 +

∑
n∈N

am+1,n)

)
πt(b,d,a)

=


b0,m, if t= 0,

∑
(b,d,a)∈X

(
bm+1 +

∑
n∈N

am+1,n

)
πt−1(b,d,a), if t > 0,

∀m∈M−, t∈ T , (6)

∑
(b,d,a)∈X

(
dn−1{t=T}βd̄n

)
πt(b,d,a) =


d0,n, if t= 0,

d̄n
∑

(b,d,a)∈X

πt−1(b,d,a), if t > 0,
∀t∈ T , n∈N , (7)

πt ≥ 0, ∀t∈ T .

Observe that constraint (5) can be simplified to∑
(b,d,a)∈X

πt(b,d,a) =
1

1−1{t=T}β
, ∀t∈ T . (8)
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It follows that constraint (7) simplifies to

∑
(b,d,a)∈X

dnπt(b,d,a) =


d0,n +1{t=T}

βd̄n
1−β , if t= 0,

d̄n
1−1{t=T}β

, if t > 0,
∀n∈N , t∈ T . (9)

The resulting ALP has (T + 1)× (N +M) constraints, though its number of decision variables

grows exponentially in both M and N . As noted before, it is possible to use column generation

procedure to solve the resulting problems. However, this might still require significant computa-

tional effort, especially when the planning horizon T is large. We address this issue in the following

proposition, which shows that the ALP reduces to a much smaller linear program.

Proposition 2. The ALP dual AFDT (b0,d0) is equivalent to the formulation

ÂFDT (b0,d0) : max
â,b̂

∑
t∈T ,

m∈M,n∈N

βtvm,nât,m,n

s.t. b̂t,m−1{t=T}β

(
b̂t,m+1 +

∑
n∈N

ât,m+1,n

)

=

 b0,m, if t= 0,

b̂t−1,m+1 +
∑
n∈N

ât−1,m+1,n, if t > 0,

∀m∈M−, t∈ T , (10)

∑
n∈N

ât,m,n + b̂t,m ≤
C

1−1{t=T}β
, ∀m∈M, t∈ T , (11)

∑
m∈M

ât,m,n ≤


d0,n +1{t=T}

βd̄n
1−β , if t= 0,

d̄n
1−1{t=T}β

, if t > 0,
∀n∈N , t∈ T , (12)

â ≥ 0,

with b̂t,M = 0 for all t.

The proof of Proposition 2 relies on the structure of the subproblems when solving AFDT (b0,d0)

with a column generation method. If these column generation subproblems can be formulated as

compact linear programming problems, the ALPs admit a compact linear programming formulation

as well; refer to Vossen and Zhang (2015) for additional discussion.

Following Vossen and Zhang (2015), we call ÂFDT (b0,d0) the reduced formulation, which has

a natural interpretation as a deterministic approximation to the original dynamic programming

formulation. For periods t ∈ T −, constraints (11) and (12) allocate the expected demand of each

customer class to the available capacity on each day in the booking horizon, where variable b̂t,m

is the expected booking level, and ât,m,n is the allocation of expected demand; for period T , these
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constraints allocate the discounted total expected demand to the discounted expected total capac-

ity, where b̂T,m is the discounted expected booking level, and âT,m,n is the allocation of discounted

expected demand. Constraint (10) is a flow balance constraint that maintains the expected number

of bookings b̂ over time. The formulation ÂFDT (b0,d0) is also closely related to the deterministic

linear programming formulation (3)-(6) in Erdelyi and Topaloglu (2010); the main difference is

that they consider a finite-horizon dynamic program and do not account for the truncation after

period T .

5. Bounds and Convergence of the Finite-Horizon Approximation

Proposition 1 shows that the finite-horizon approximation produces an upper bound that improves

as the planning horizon T increases and converges to the infinite-horizon approximation bound.

For computational purposes, it is useful to know how far the bound is from the infinite-horizon

approximation bound for different values of T . One way to do this is to construct lower bounds on

the infinite-horizon approximation bound, given the solution to the finite-horizon approximation.

In this section, we propose such lower bounds. Section 5.1 discusses a näıve lower bound. The gap

between the finite-horizon approximation and the näıve lower bound vanishes as T increases, estab-

lishing the convergence of the finite-horizon approximation to the infinite-horizon approximation

bound. Section 5.2 further proposes an improved lower bound, which is often much tighter than the

näıve lower bound, allowing us to establish convergence of the finite-horizon affine approximation

for much smaller planning horizons T .

5.1 A Näıve Lower Bound

To establish an initial lower bound, we first define ÂFD∞(b0,d0) to be the infinite-dimensional

reduced formulation that corresponds to the infinite horizon approximation ÂLD∞(b0,d0). We

comment here that ÂFD∞(b0,d0) is given by ÂFDT (b0,d0) for T =∞. We choose not to explic-

itly state the formulation to avoid repetition. Next, we construct a feasible solution (a,b) to

ÂFD∞(b0,d0) based on an optimal solution (a∗,b∗) for the dual problem ÂFDT (b0,d0). To that

end, we define

at,m,n =

{
a∗t,m,n if t < T,

0 if t≥ T,
∀t,m∈M, n∈N ,

bt,m =


b∗t,m, if t < T,

b∗T−1,m+t−T+1, if t≥ T,m+ t−T ≤M − 1,

0, otherwise,

∀t,m∈M.
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The resulting solution satisfies the constraints in ÂFD∞(b0,d0), and has a solution value equal

to z̃T (b0,d0)− βT
∑

m∈M,n∈N vm,na
∗
T,m,n. Now, let z be some bound on the revenue that can be

obtained in the final period of the time horizon. For example, we can define

z = max
a

∑
m∈M,n∈N

vm,nam,n

s.t.
∑
n∈N

am,n ≤
1

1−β
C, ∀m∈M,∑

m∈M

am,n ≤
1

1−β
d̄n, ∀n∈N ,

a ≥ 0.

From Proposition 1, we also know that the objective value z̃T (b0,d0) is monotone decreasing in

T for any initial state (b0,d0), and that z̃T (b0,d0) converges as T goes to infinity. As a result,

we can establish both an upper and a lower bound on the infinite-horizon approximation, that is,

z̃T (b0,d0)≥ z̃∞(b0,d0)≥ z̃T (b0,d0)− βT z. Due to discounting, the difference between the upper

and lower bounds vanishes when T is large, and it follows that z̃∞(b0,d0) = limT→∞ z̃T (b0,d0).

5.2 An Improved Lower Bound

In numerical tests, the bounds introduced in Section 5.1 require a large planning horizon T to

achieve convergence to the infinite-horizon approximation bound. In this section, we propose

an alternative lower bound. As in Section 5.1, we construct a solution (a,b) to the infinite-

horizon approximation ÂFD∞(b0,d0) based on an optimal solution (a∗,b∗) for the dual problem

ÂFDT (b0,d0) for a given T > 0. Let

at,m,n =

{
a∗t,m,n, if t < T ,
(1−β)a∗T,m,n, otherwise,

∀m∈M, n∈N , t∈Z+, (13)

bt,m =

{
b∗t,m, if t < T ,
(1−β)b∗T,m, otherwise,

∀m∈M, t∈Z+. (14)

The objective value of the solution (a,b) to ÂFD∞(b0,d0) equals z̃T (b0,d0). This solution pro-

vides a lower bound to ÂFD∞(b0,d0) if (a,b) is feasible since the objective function maximizes

revenue. However, (a,b) defined in (13)–(14) may not be feasible for ÂFD∞(b0,d0). While (a,b)

satisfies the constraints corresponding to (11)–(12) by construction, the corresponding flow balance

constraints (10) may not be satisfied. Specifically, substituting (a,b) into the corresponding flow

balance constraint leads to

(1−β)b∗T,m = b∗T−1,m+1 +
∑
n∈N

a∗T−1,m+1,n, ∀m∈M−, (15)
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βb∗T,m = β

(
b∗T,m+1 +

∑
n∈N

a∗T,m+1,n

)
, ∀m∈M−. (16)

Here, we choose not to write down the constraint for t < T since (at,bt) = (a∗t ,b
∗
t ) for t < T .

The condition (15) results from the substitution when t = T and can be interpreted as a flow

balance constraint, while condition (16) results from the substitution when t > T and can be

interpreted as an equilibrium condition. The solution (a,b) constructed using (13)–(14) is feasible

for ÂFD∞(b0,d0) only if conditions (15)–(16) are satisfied.

However, this also suggests that it is possible to obtain a lower bound to ÂFD∞(b0,d0) by

constructing an auxiliary linear program that incorporates (15) and (16) as constraints. To illustrate

this, we first note that, when t= T , constraint (10) in ÂFDT (b0,d0) equals

b∗T,m−β

[
b∗T,m+1 +

∑
n∈N

a∗T,m+1,n

]
= b∗T−1,m+1 +

∑
n∈N

a∗T−1,m+1,n, ∀m∈M−. (17)

We can construct an auxiliary linear program AFDT (b0,d0) by replacing constraints (17) with con-

straints (15)–(16) in ÂFDT (b0,d0); intuitively, this corresponds to a disaggregation of constraints

(17).

However, as indicated earlier, (a,b) constructed using (13)–(14) is feasible for ÂFD∞(b0,d0)

only if conditions (15)–(16) are satisfied; as a result, the auxiliary linear program might not be

feasible when the planning horizon T is small: the equilibrium condition (16) requires that bT,m ≥

bT,m+1 for all m ∈M−, which may not be achievable when starting from an initial state where

b0,m < b0,m+1 for some m ∈M−. To account for this, we relax the auxiliary linear program and

penalize potential constraint violations. Specifically, we relax the auxiliary program by allowing

bookings that are present initially to be discarded. This yields the following formulation:

AFDT (b0,d0) :

zT (b0,d0) =max
â,b̂,q̂

∑
t∈T ,

m∈M,n∈N

βtvm,nât,m,n−
∑

m∈M−
ρmq̂m

s.t. (1−1{t=T}β)b̂t,m =

 b0,m− q̂m, if t= 0,

b̂t−1,m+1 +
∑
n∈N

ât−1,m+1,n, if t > 0, ∀m∈M−, t∈ T , (18)

βb̂T,m = β

[
b̂T,m+1 +

∑
n∈N

âT,m+1,n

]
, ∀m∈M−. (19)

∑
n∈N

ât,m,n + b̂t,m ≤
C

1−1{t=T}β
, ∀m∈M, t∈ T , (20)

∑
m∈M

ât,m,n ≤


d0,n, if t= 0,

d̄n
1−1{t=T}β

, if t > 0,
∀n∈N , t∈ T , (21)
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â, b̂, q̂ ≥ 0.

In the above, we assume b̂t,M = 0 for all t ∈ T . Of course, this requires penalty coefficients ρm

that are “large enough” to ensure that zT (b0,d0) provides a lower bound on the infinite-horizon

approximation. The following proposition establishes such penalty coefficients.

Proposition 3. Suppose T > 0, and let

ρm = max
k∈{1,...,m},

n∈N

βm−kvk,n, ∀m∈M−. (22)

Then,

(i) zT (b0,d0)≤ zT+1(b0,d0), and

(ii) There exists an optimal solution (â∗, b̂∗, q̂∗) to AFDT (b0,d0) such that q̂∗m = 0 for all m∈M−

when T ≥M − 1.

When q̂∗m = 0 for all m∈M−, the corresponding infinite horizon solution obtained using (13) and

(14) will also be feasible for ÂFD∞(b0,d0). In that case, zT (b0,d0) bounds the infinite-horizon

approximation from below and we have

z̃T (b0,d0)≥ z̃∞(b0,d0)≥ zT (b0,d0).

Because zT (b0,d0) is monotone in T , AFDT (b0,d0) will therefore provide a lower bound for all

T > 0.

We establish convergence in the following proposition. Proposition 4 implies that the difference

between the upper and lower bounds on the infinite horizon approximation values (provided by the

reduced formulation ÂFDT (b0,d0) and the auxiliary linear program AFDT (b0,d0), respectively)

vanishes as T increases.

Proposition 4. Suppose T > 0, and let (â∗, b̂∗) be an optimal solution for the dual problem

ÂFDT (b0,d0). Then,

z̃T (b0,d0)− zT (b0,d0)≤
∑

m∈M−
εT,m

(
b̂∗T−1,m+1 +

∑
n∈N

â∗T−1,m+1,n

)
+
∑

m∈M−
γT,m

(∑
n∈N

â∗T,m+1,n

)
,

where

εT,m =


max

ρT+m, max
k=1,...,min(T,M−m),

n∈N

βT−kvm+k,n

 , if T +m≤M − 1,

max
k=1,...,min(T,M−m),

n∈N

βT−kvm+k,n, o.w.,
∀m∈M−,

and γT,m is defined recursively as

γT,m =


max
n∈N

βTvM,n, if m=M − 1,

max
(

max
n∈N

βTvm+1,n, (1−β)εT,m+1 + γT,m+1

)
, o.w.,

∀m∈M−.
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The proof of Proposition 4 relies on the fact that the reduced formulation ÂFDT (b0,d0) can be

obtained by aggregating constraints (15) and (16) in the auxiliary linear program AFDT (b0,d0).

Then, the inequality in Proposition 4 follows as an a posteriori bound on the error induced by

aggregating these constraints. Such bounds have been studied extensively, and we refer to Zipkin

(1980), Mendelssohn (1980), and Shetty and Taylor (1987) for details on this approach.

We note that constraints (10)–(11) in the reduced formulation imply that b̂∗t−1,m+1 +∑
n∈N â

∗
t−1,m+1,n ≤ C and

∑
n∈N âT,m+1,n ≤ C

1−β for all m ∈M− in Proposition 4. As a result, we

can also use Proposition 4 and the penalty coefficients defined therein to construct an a priori

bound on the gap that solely depends on an instance’s input parameters. In principle, this a priori

bound could be used to determine an appropriate horizon length T . However, because the auxiliary

linear program AFDT (b0,d0) requires little computational overhead, an alternative approach is to

gradually increase the horizon length T until the observed gap after solving both ÂFDT (b0,d0)

and AFDT (b0,d0) is sufficiently small.

6. Heuristic Policies

In this section, we introduce heuristic policies that can be derived from the finite-horizon approx-

imations. The relevant primal-dual pair considered is ÂFPT (b0,d0)–ÂFDT (b0,d0), where the

primal formulation ÂFPT (b0,d0) is not explicitly stated. Section 6.1 discusses the one-step greedy

policies based on the solution of ÂFPT (b0,d0) and Section 6.2 lays out probabilistic allocation

policies based on the solution of ÂFDT (b0,d0). As a benchmark, we also consider a myopic policy

that disregards future impacts and selects an allocation that maximizes immediate revenues.

6.1 Primal Policies

Let (V∗,W∗, θ∗) be an optimal solution to ÂFPT (b0,d0), which can either be obtained from

ÂFPT (b0,d0) or derived from the dual solution to ÂFDT (b0,d0).

For a stationary approximation (T = 0), V ∗0,m can be interpreted as the total discounted value

(cost) of a booking on day m and W ∗
0,n as the value of an additional class-n customer. A one-step

greedy policy based on these weights can be derived by substituting the resulting approximation

(4) into the right hand side of (1) for each state (b,d), resulting in the optimization problem

max
a∈A(b,d)

r(a) +β

[ ∑
m∈M−

(
bm+1−

∑
n∈N

am+1,n

)
V ∗0,m +

∑
n∈N

d̄nW
∗
0,n + θ∗− 0

]
.

Omitting the constant terms in the objective function, the problem can be more explicitly stated

as

max
a

∑
m∈M,n∈N

(vm,n−βV ∗0,m−1)am,n
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s.t.
∑
n∈N

am,n ≤ C − bm, ∀m∈M,∑
m∈M

am,n ≤ dn, ∀n∈N ,

a ≥ 0.

The optimization problem above is a transportation problem. As a result, the optimal solution

is integral, even though the problem is expressed as a linear program with no explicit integrality

constraints.

When T > 0, we instead base our value function approximations on the values of the decision

variables V ∗1,m, which can be interpreted as the marginal value (cost) of a booking on day 1 at the

end of the first period. Incorporating the scaling factor that we applied to construct non-stationary

value function approximations in Section 3.2, the resulting optimization problem will be

max
a∈A(b,d)

r(a) +β

[ ∑
m∈M−

(
bm+1−

∑
n∈N

am+1,n

)
V ∗1,m +

∑
n∈N

d̄nW
∗
1,n + θ∗− 1

]
.

As before, this problem can be expressed as a linear program.

The one-step greedy policy can be applied both with and without resolving. With resolving, the

ALP is resolved whenever the state is updated. Thus, the value function estimates that are used

in the one-step greedy policy may also change after every update. Alternatively, we can also solve

the reduced formulation once, using the expected number of bookings and demand based on the

initial state distribution α as the initial state. In this case, the value function estimates that are

used in the one-step greedy policy remains constant.

6.2 Dual Policies

The finite horizon approximation also enables an alternative approach to constructing heuristic

policies, based on the optimal solution to ÂFDT (b0,d0). To illustrate this approach, suppose that

(a∗,b∗) is an optimal solution for ÂFDT (b0,d0) with T > 0. We focus on the first period and

observe that ∑
n∈N

a∗0,m,n ≤ C − b0,m, ∀m∈M, (23)∑
m∈M

a∗0,m,n ≤ d0,n, ∀n∈N . (24)

It is important to note that a∗0 might be fractional, due to the linkages presented by constraints

(10) in ÂFDT (b0,d0). As a result, we cannot construct a policy that simply selects the allocation

a∗0. However, the following proposition shows that a∗0 can be expressed as a convex combination of

integer allocations that satisfy constraints (23)–(24).
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Proposition 5. Let Ã(b,d) be the real-valued superset of A(b,d) such that

Ã(b,d) =

{
a∈RM×N+ :

∑
m∈M

am,n ≤ dn, ∀n∈N ,
∑
n∈N

am,n ≤C − bm, ∀m∈M

}
.

Suppose a∗0 ∈ Ã(b,d). Then a∗0 can be written as a convex combination of integer allocations in

A(b,d). That is, there exist some positive integer K that is polynomially bounded by M and N

and integer allocations ak ∈A(b,d) for k= 1, . . . ,K such that

a∗0 =
K∑
k=1

λka
k,

where λk ≥ 0 for k= 1, . . . ,K and
∑K

k=1 λk = 1.

The proof of Proposition 5 relies on Birkhoff’s algorithm to generate the integer allocations, and

shows that the number of such allocations is polynomially bounded.

For our purposes, this result immediately suggests a probabilistic allocation policy: given an

optimal solution to ÂFDT (b0,d0), we generate a convex combination of integer allocations ak

from the first period allocation a∗0 and select allocation ak with probability λk. Observe that this

policy requires that we resolve ÂFDT (b0,d0) every time the state is updated.

7. Numerical Study

We conduct a numerical study to evaluate the bounds produced by our finite horizon approximation

and to investigate policy performance. We consider both the one-step greedy policy (with and

without resolving) and the probabilistic allocation policy introduced in Section 6.2. We also use

the myopic policy as a benchmark.

Our test instances are similar to those in Section 6 of Patrick et al. (2008), although we consider

neither demand carryover nor overtime capacity. These test instances consider an outpatient clinic

with total capacity of 60 scans per day. We take the booking horizon length M = 30, and there

are three priority classes (N = 3). In the base case, the daily demands for the three classes follow

Poisson distributions with means of 30, 18, and 12, respectively. We define the system load as

the ratio between the expected total demand and the regular daily capacity, which is given by

ρ =
∑

i λi/C. Following this definition, the load in the base case is exactly 1. In our numerical

experiments, we vary the load from 0.6 to 2 with stepsize 0.2 by scaling the mean demand in the

base case by the load ρ. Rewards are determined by a combination of base rewards and target

dates. The base rewards fn equal 200, 100, and 50 for classes 1, 2, and 3, respectively, and we use

target dates tn of 7 days, 14 days, and 21 days, respectively. Following Patrick et al. (2008), the

reward takes the form vm,n = βmax(0,m−tn)fn. Here, β is the per period discount factor and takes
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(a) β = 0.95, ρ= 1.4 (b) β = 0.99, ρ= 1.4

Figure 1 Upper and Lower Bounds for Different Horizon Length T

the values 0.95 and 0.99 in our numerical study. All experiments were run on a machine with an

Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz and 64 GB RAM. All algorithms were implemented

in Python 3.6.5 and the linear programs were solved using Gurobi 8.0.1.

7.1 Approximation Bounds

As a first step, we evaluate the bounds produced by our finite horizon approximation. The questions

we consider are (1) how does the length of the planning horizon impact the upper bound from the

finite horizon approximations and (2) how fast do the finite horizon approximations converge to

the infinite-horizon approximation bounds.

We evaluate the upper bounds obtained by solving ÂFDT (b0,d0) for different values of T (recall

that the stationary affine approximation has T = 0). We determine these bounds by the sample

average over 100 randomly generated initial states. The number of bookings in the initial state

are sampled from the uniform distribution, while the demand is sampled from the corresponding

Poisson distributions. For each T , we also infer lower bounds on the infinite horizon approximation

using the two approaches introduced in Section 5. The computational times to solve the reduced

formulations is negligible even for large T (e.g., less than 0.2 seconds when T = 50); thus, we do

not report computational times for individual instances.

Figure 1 shows the results for two representative instances; they are representative of the overall

patterns that emerged in our experiments. In particular, the finite horizon approximations can

provide a substantial improvement in the upper bounds relative to the stationary approximation

(corresponding to T = 0). The magnitude of improvement depends on the discount factor, and is
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(a) β = 0.95, ρ= 1.4 (b) β = 0.99, ρ= 1.4

Figure 2 Performance of Heuristic Policies for Different Horizon Length T

larger for smaller β. In addition, these improvements can be obtained for moderate values of T .

When the discount factor β is 0.95, convergence to within 1% and 0.01% of the infinite horizon

approximation bound requires average T values of 19.7 and 30.4, respectively. Moreover, with a

discount factor of 0.99, these numbers change to 16.0 and 27.1, respectively. Therefore, the lower

and upper bounds from the finite horizon approximation appear to converge to the infinite horizon

approximation bound rather quickly. We emphasize that the improved lower bounds obtained by

solving the auxiliary linear program are often substantially stronger than the näıve lower bounds

for moderate values of T and are therefore critical in establishing convergence. For example, when

β = 0.99 the näıve lower bounds can still be quite far from the upper bounds even for T = 300.

Using näıve lower bounds to establish convergence would have caused substantial, but unnecessary,

computational overhead. Note that we choose not to plot the improved lower bounds for small T

since they are quite loose in that region.

7.2 Heuristic Policy Performance

We evaluate the heuristic policies introduced in Section 6 for different horizon lengths T via sim-

ulation over 100 randomly generated initial states. Four policies are evaluated: one-step greedy

with and without resolving, probabilistic allocation, and myopic. We collect the total discounted

revenue for each simulation (starting on the first day), and terminate each simulation only when

the number of days k is such that βk ≤ 10−6. We remark that the myopic policy does not depend

on T and is shown as a benchmark.

Representative results are shown in Figure 2. We observe that all of the approximation-based

policies significantly outperform the myopic policy. Furthermore, resolving after each state update
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(a) β = 0.95, ρ= 1.4 (b) β = 0.99, ρ= 1.4

Figure 3 Percentage Improvements over Stationary Affine (T = 0) for Different Horizon Length T

leads to substantial improvement in policy performance. The probabilistic allocation policy is the

best overall and outperforms the one step greedy policies. Moreover, the results again indicate that

policies derived from the finite horizon approximation tend to improve as the horizon length T

increases.

The use of finite horizon approximations not only provides tighter bounds but also leads to

performance improvements in the heuristic policies. Figure 3 shows the percentage improvements

of the non-stationary finite-horizon approximation relative to those from the stationary approxi-

mation (T = 0). From Figure 3(a), when β = 0.95 and ρ = 1.4, the non-stationary finite-horizon

approximation can improve the upper bound by 4.23% and the policy performance by up to 2.4%;

together, these improvements reduce the optimality gap from 6.88% to 0.37%. In Figure 3(b), with

β = 0.99 and ρ= 1.4, the non-stationary finite-horizon approximation can improve the upper bound

by 0.23% and the policy performance by up to 3.52%; together, these improvements reduce the

optimality gap from 3.93% to 0.19%. We also compare the performance of the affine finite-horizon

approximation with the performance of a stronger stationary approximation structure, the separa-

ble piecewise linear approximation. It is known that the separable piecewise linear approximation

can yield better bounds and potentially stronger heuristic policies than affine approximation; see,

e.g., Meissner and Strauss (2012). It is unclear whether separable piecewise linear approximation

is stronger than affine finite-horizon approximation. In Appendix A, we conduct a numerical study

on randomly generated problem instances to compare the separable piecewise linear approximation

and the affine finite-horizon approximation. Even though the separable piecewise linear approxima-

tion can produce tighter bounds for very small instances, we show that this advantage disappears
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for moderately-sized problems and that the affine finite-horizon approximation usually produces

tighter bounds. Furthermore, solving the separable piecewise linear approximation can take hours

for relatively small problem instances, while the affine finite-horizon approximation solves in a

fraction of a second. Therefore, the affine finite-horizon approximation is a strong alternative to the

separable piecewise linear approximation. Note that solving the ALPs from the separable piecewise

linear approximation is challenging since no compact reformulations, like the one we established for

the affine finite-horizon approximation, are known. Of course, one can also consider finite-horizon

separable piecewise linear approximations. However, such an approximation is not likely to be

tractable.

8. Concluding Remarks

Approximate linear programs have been widely used to approximately solve stochastic dynamic

programs that suffer from the curse of dimensionality. Due to the canonical results establishing

the optimality of stationary value functions and policies for infinite-horizon dynamic programs,

existing research has predominantly focused on approximation architectures that are stationary

over time. We consider finite-horizon approximations where the parameters are time-dependent

within a pre-determined time horizon and are stationary afterwards. Such finite-horizon approxi-

mations are commonly used to solve infinite-horizon linear programming problems, but have not

been considered in the ALP literature.

We apply this approach, together with an affine approximation architecture, to a rolling-horizon

capacity allocation problem and obtain three main results. First, non-stationary approximations

can substantially improve upper bounds on the optimal revenue. Second, these upper bounds are

monotonically decreasing as the horizon length increases, and converge to the upper bound from

the infinite-horizon approximation. Finally, the improvement does not come at the expense of

tractability, as the resulting ALPs admit compact representations and can be solved efficiently.

They also produce strong heuristic policies.

Although some of the techniques employed in this paper are specific to our setting, we believe

that our approach to constructing finite-horizon approximations can be generalized to a broad

class of infinite-horizon MDPs. The application of a non-stationary functional approximation to the

linear programming formulation of an infinite-horizon MDP provides a general framework; hence,

convergence results analogous to Proposition 1 may also hold in more general settings. Although

the bounding techniques introduced in Section 5 are specific to our setting, their underlying ideas

rely on generic concepts from linear programming aggregation that are applicable to a broad class

of linear programming problems (Zipkin 1980, Shetty and Taylor 1987). In general, however, the
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derivation of equivalent reduced formulations similar to the formulation introduced in Section 4

depends on the structure of the underlying applications and may therefore not be attainable in

general. Nevertheless, the recent work of Ke et al. (2021) shows that even when equivalence cannot

be established, compact reformulations can be constructed to yield strong bounds and policies.

Therefore, the framework in our paper might be applied even if the setting does not admit equivalent

reduced formulations.

The rolling-horizon capacity allocation problem naturally admits a number of additional consid-

erations, ranging from incorporating demand carryover and/or overtime capacity as discussed in

the Patrick et al. (2008) to settings where multiple resources become available in each time period

and/or situations where customers might cancel bookings. It would be interesting to consider

such characteristics and evaluate their impact on the performance of the resulting finite-horizon

approximations.

Relative to a stationary separable piecewise linear approximation, we observed that the finite-

horizon approximations are not only more efficient but also more effective as they can achieve better

bounds on the optimal revenue. It would be interesting to further investigate stronger approxima-

tion structures, both in terms of their use in conjunction with finite-horizon approximations and in

their performance relative to finite-horizon approximations that rely on more basic approximation

structures. Selecting appropriate basis functions for an approximation architecture can be a chal-

lenging task that is often problem specific. However, finite-horizon approximations may effectively

provide a principled approach to adding such basis functions that can boost performance of weaker

approximation architectures with little additional computational overhead. We believe it would be

worthwhile to explore this trade-off in other settings as well.
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Appendix A: Comparison with Separable Piecewise Linear Approximations

We compare the performance of the affine finite-horizon approximation with the widely used sep-

arable piecewise linear approximation, which is given by

ϑ(b,d)≈ θ+
∑

m∈M−

C∑
j=1

Vm,j1l{bm ≥ j}+
∑
n∈N

D∑
k=1

1l{dn ≥ k}Wn,k. (25)

Note that (25) is a stationary approximation, as is typical in the literature for infinite horizon

problems. Clearly, the separable piecewise linear approximation provides a more flexible approxi-

mation architecture than the (stationary) affine approximation. Our focus here is to compare the

stationary separable piecewise linear approximation with the affine finite-horizon approximation.

Our numerical study shows that the affine finite-horizon approximation significantly outperforms

the separable piecewise linear approximation, in that it tends to produce stronger bounds (except

for very small problem instances). Moreover, the separable piecewise linear approximation takes

hours to solve to optimality whereas the affine finite-horizon approximation requires only a fraction

of a second.

Substituting (25) into Pα yields

PLP(b0,d0) :

min
θ,V,W

θ+
∑

m∈M−

b0,m∑
j=1

Vm,j +
∑
n∈N

d0,n∑
k=1

Wn,k

s.t. (1−β)θ+
∑

m∈M−

 bm∑
j=1

Vm,j −β
sm+1(b,a)∑

j=1

Vm,j

+
∑
n∈N

(
dn∑
k=1

Wn,k−β
D∑
k=1

p{d′n ≥ k}Wn,k

)
≥ r(a),

∀(b,d,a)∈X ,

with sm(b,a) = bm +
∑

n∈N am,n. Its corresponding dual equals

PLD(b0,d0) :

max
π

∑
(b,d,a)∈X

r(a)π(b,d,a)

s.t.
∑

(b,d,a)∈X

π(b,d,a) =
1

1−β
,

∑
(b,d,a)∈X

(1l{bm ≥ j}−β1l{sm+1(b,a)≥ j})π(b,d,a) =

{
1, if j ≤ b0,m,
0 o.w.,

∀m∈M−, j ∈ C,

∑
(b,d,a)∈X

(1l{dn ≥ k}−βp{d′n ≥ k})π(b,d,a) =

{
1, if k≤ d0,n,
0 o.w.,

∀n∈N ,

π ≥ 0.
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Column Generation

The dual problem PLD(b0,d0) has relatively few constraints, though the number of decision

variables is exponential in both the number of customer classes and the length of the booking

horizon. This enables a column generation procedure (Desrosiers and Lübbecke 2005), which uses

only a small subset of the decision variables and adds more variables when needed. This approach

has received considerable attention in the literature (Adelman 2007, Zhang and Adelman 2009,

Meissner and Strauss 2012). The procedure maintains a restricted master problem (RMP), which

works with a small subset of the columns in the master problem with PLD(b0,d0). Let (V,W, θ) be

the variables in the primal problem PLP(b0,d0) corresponding to in (RMP). A column generation

subproblem is used to determine the columns with the highest reduced cost. For the separable

piecewise linear approximation, the column generation subproblem is given by

ϕ= max
b,d,a

r(a)− (1−β)θ−
∑

m∈M−

C∑
j=1

Vm,j

[
1l{bm ≥ j}−β1l{bm+1 +

∑
n∈N

am+1,n ≥ j}

]

−
∑
n∈N

D∑
k=1

Wn,k [1l{dn ≥ k}−βp{d′n ≥ k}]

s.t.
∑
m∈M

am,n ≤ dn, ∀n∈N ,∑
n∈N

am,n + bm ≤ C, ∀m∈M,

dn ≤ D, ∀n∈N ,

b∈ZM+ ,d∈ZN+ ,a∈ZM×N+ .

If the reduced cost ϕ≤ 0, the solution to (RMP) is optimal to PLD(b0,d0) as well. Otherwise,

we can add columns with positive reduced costs to (RMP) based on the solution to the column

generation subproblems, and continue by re-optimizing (RMP). Observe that the objective func-

tion of the column generation subproblem is nonlinear; auxiliary binary variables are needed to

reformulate the problem as a mixed integer linear program.

Proposition 6. The column generation subproblem is equivalent to the following mixed integer

linear program:

ϕ= max
b,d,a,y,s,q

∑
m∈M

∑
n∈N

vm,nam,n− (1−β)θ−
∑

m∈M−

C∑
j=1

Vm,j [ym,j −βsm,j]

−
∑
n∈N

D∑
k=1

Wn,k [qn,k−βp{d′n ≥ k}]

s.t.
∑
m∈M

am,n ≤ dn, ∀n∈N ,∑
n∈N

am,n + bm ≤ C, ∀m∈M,



32

bm =
C∑
j=1

ym,j, ∀m∈M,

bm+1 +
∑
n∈N

am+1,n =
C∑
j=1

sm,j, ∀m∈M−,

dn =
D∑
k=1

qn,k, ∀n∈N ,

ym,j+1 ≤ ym,j, ∀m∈M, j = 1, ...,C − 1, ,

sm,j+1 ≤ sm,j, ∀m∈M−, j = 1, ...,C − 1,

qn,k+1 ≤ qn,k, ∀n∈N , k= 1, ...,D− 1,

b∈ZM+ ,d∈ZN+ ,a∈ZM×N+ ,

y ∈ {0,1}M×C , s∈ {0,1}M−1×C ,q∈ {0,1}N×D.

In the formulation above, the objective function is linearized by introducing binary variables y, s,

and q. By imposing the requirement that ym,j is decreasing in j, we have a one-to-one correspon-

dence between the vector ym and bm. We impose similar monotonicity conditions on s and q to

ensure a one-to-one mapping with the corresponding variables. It is important to note that while

the column generation subproblem for the affine approximation can be formulated as a linear pro-

gramming problem (which in turn allows us derive a compact formulation for the overall problem),

we were unable to establish a similar result for the separable piecewise linear approximation

We also note that the objective function value z̃ of an intermediate solution to (RMP) provides a

lower bound on the optimal objective function value of PLD(b0,d0), which we denote by z̃∗(b0,d0).

Observe also that z̃∗(b0,d0) is itself an upper bound of the total expected reward of the original

MDP. However, it is well-known that z̃+ 1
1−βϕ provides an upper bound on z̃∗(b0,d0). As a result,

we obtain an upper bound of the original MDP after every iteration of the column generation

procedure.

Numerical Results

We compare the performance of the separable piecewise linear approximation and the affine finite-

horizon approximation on randomly generated instances. We consider two sets of problem instances.

These instances are relatively small. Due to the slow convergence of the column generation proce-

dures, it is intractable to test larger instances. In fact, the smaller instances we tested already take

hours for the column generation procedures to converge. On the other hand, the affine finite-horizon

approximation requires less than a second for all instances. For the first set of small test instances,



33

Table 1 Bounds for problem instances with M = 3, N = 2, and C = 3. The last column reports the number of

instances (out of 100) for which the SPL bound is tighter than the FH50 bound

β ρ FH-LB
FH1 FH50 SPL

#
value gap (%) value gap (%) value gap (%)

0.95 0.6 245.7 260.8 6.1 257.9 5.0 257.7 4.9 72
0.95 1.0 346.3 423.9 22.4 421.9 21.8 412.5 19.1 89
0.95 1.5 409.8 451.4 10.1 448.1 9.3 445.4 8.7 75
0.95 3.0 461.2 472.9 2.5 471.8 2.3 469.0 1.7 85
0.99 0.6 1246.0 1303.1 4.6 1300.2 4.3 1287.8 3.4 93
0.99 1.0 1745.8 2161.1 23.8 2158.8 23.6 2090.4 19.7 99
0.99 1.5 2071.4 2274.7 9.8 2271.4 9.6 2242.3 8.2 92
0.99 3.0 2321.7 2380.5 2.5 2379.4 2.5 2358.6 1.6 94

Table 2 Bounds for problem instances with M = 7, N = 3, and C = 10. The last column reports the number of

instances (out of 10) for which the SPL bound is tighter than the FH50 bound

β ρ FH-LB
FH1 FH50 SPL

#
value gap (%) value gap (%) value gap (%)

0.95 0.6 1027.0 1033.2 0.6 1022.3 -0.4 1033.0 0.6 2
0.95 1.0 1552.2 1668.1 7.5 1660.5 7.0 1666.6 7.4 0
0.95 1.5 1774.2 1840.5 3.7 1815.7 2.3 1837.0 3.5 0
0.95 3.0 1923.7 1957.3 1.7 1944.2 1.1 1946.2 1.2 5
0.99 0.6 5109.7 5105.9 -0.1 5094.6 -0.3 5105.7 -0.1 2
0.99 1.0 7827.3 8454.4 8.0 8443.2 7.9 8442.6 7.9 2
0.99 1.5 8751.1 8995.8 2.8 8974.0 2.5 8975.3 2.6 3
0.99 3.0 9349.1 9451.7 1.1 9440.1 1.0 9427.0 0.8 5

the separable piecewise linear approximation produces better bounds than the affine ALP. How-

ever, for a second set of somewhat larger instances, the affine finite-horizon approximation produces

better bounds for the majority of problem instances. Thus, it appears that the affine finite-horizon

approximation significantly outperforms the separable piecewise linear approximation overall.

The first set of small problem instances have a capacity of 3 slots per day. We use a booking

horizon M = 3, and there are two customer classes (N = 2). Daily demand rates and reward

parameters are randomly generated. We vary the discount factor β and system load ρ. For each

parameter configuration, 100 instances are randomly generated. We calculate the stationary affine

approximation bound (FH1), the affine finite-horizon approximation upper bound with T = 50

(FH50), and the separable piecewise linear approximation bound (SPL) for each instance. We also

simulate the heuristic policy derived from affine finite-horizon approximation policy, which gives us

a lower bound (FH-LB). We report the gaps between the upper bounds and FH-LB as a conservative

estimate on the optimality gaps. Each column generation subproblem requires approximately 0.5

seconds, while the finite-horizon approximation solved within 0.01 seconds. We report the average

value across 100 instances for each configuration in Table 1.
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In Table 1, the separable piecewise linear approximation results in tighter bounds than the

affine ALP (FH1), which is to be expected. Moreover, for the majority of instances the separable

piecewise linear approximation bound is better than the affine finite-horizon approximation bound.

Due to the small size of the instances, the column generation subproblems that arise solving the

separable piecewise linear approximations are reasonably fast, even though the affine finite-horizon

approximation is significantly faster.

We next consider slightly larger instances with a booking horizon M = 7, N = 3 customer classes,

and a daily capacity C = 10. We again vary the discount factor and load factor, and conduct

numerical experiments on randomly generated instances. For each discount factor and load factor

combination, 10 instances are generated. We report the average value across the 10 instances in

Table 2. In Table 2, the quality of affine finite-horizon approximation bound is better than that

of the separable piecewise linear approximation bound for the majority of instances. However, the

affine finite-horizon approximation can be solved within 0.05 second for each test instance, whereas

the column generation procedure that is use to solve the separable piecewise linear approximations

takes 7.8 hours to converge on average. Note that the gaps reported are negative in a few cases.

This is due to the fact that the lower bounds are obtained through simulation and therefore subject

to statistical error.

Appendix B: Technical Proofs

Proof of Proposition 2

The proof proceeds in two steps. First, we show that ÂFDT (b0,d0) is a relaxation of

AFDT (b0,d0), in that for any solution to AFDT (b0,d0) we can construct a solution to

ÂFDT (b0,d0) with the same objective value by variable aggregation. This implies that

ÂFDT (b0,d0) produces a lower bound for AFDT (b0,d0). Second, we establishing the reverse

direction by showing that AFDT (b0,d0) can be interpreted as a Dantzig-Wolfe reformulation of

ÂFDT (b0,d0).

Step 1: Consider a feasible solution {πt}∀t∈T to AFDT (b0,d0) and define b̂t,m =∑
(b,d,a)∈X bmπt(b,d,a) and ât,m,n =

∑
(b,d,a)∈X am,nπt(b,d,a) for all m ∈M−, n ∈ N , and t ∈ T .

By construction, the solution (â, b̂) satisfies constraint (10) in ÂFDT (b0,d0) and have the same

objective function value. We also have

∑
n∈N

ât,m,n + b̂t,m =
∑

(b,d,a)∈X

πt(b,d,a)

(∑
n∈N

am,n + bm

)
≤

∑
(b,d,a)∈X

πt(b,d,a)C =
C

1−1{t=T}β
,
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where the inequality follows from the definition ofA(b,d); thus, the solution also satisfies constraint

(11). Similarly, we have

∑
m∈M

ât,m,n =
∑

(b,d,a)∈X

πt(b,d,a)

(∑
m∈M

am,n

)
≤

∑
(b,d,a)∈X

πt(b,d,a)dn,

where the inequality again follows from the definition of A(b,d). Together with constraint (9), this

shows that the solution satisfies constraint (12).

Step 2: To show the reverse direction, we slightly modify the formulation ÂFDT (b0,d0) by

introducing decision variables d̂t,n with 0≤ d̂t,n ≤D for all t∈ T and n∈N , and splitting constraint

(12) into

∑
m∈M

ât,m,n ≤ d̂t,n, ∀n∈N , t∈ T , (26)

d̂t,n =


d0,n +1{t=T}

βd̄n
1−β , if t= 0,

d̄n
1−1{t=T}β

, if t > 0,
∀n∈N , t∈ T . (27)

We also define the bounded polyhedron

Ω =


(b,d,a)∈RM+ ×RN+ ×RM×N+ :

∑
m∈M

am,n ≤ dn,∀n∈N ,∑
n∈N

am,n + bm ≤C,∀m∈M,

dn ≤D,∀n∈N

 .

Observe that Ω has integer extreme points, as its constraint matrix is totally unimodular (TU).

To see that the constraint matrix is TU, recall a well-known sufficient condition for TU: a matrix

A is TU if (i) aij ∈ {1,−1,0} for all i, j; (ii) each column contains at most 2 nonzero coefficients;

(iii) there exists a partition (M1,M2) of the set M of rows such that each column j containing

two nonzero coefficients satisfies
∑

i∈M1
aij −

∑
i∈M2 aij = 0, see Proposition 3.2 in (Wolsey 1998).

We can verify that these conditions are satisfied by construction a partition where the constraints

where the first and third constraint are in the first set and the second constraint is in the other

set.

Let XΩ be the set of its extreme points. Note that XΩ ⊆X by construction.

Now, consider a feasible solution {(bt,dt,at)}t∈T to the modified reduced formulation

ÂFDT (b0,d0). For each t ∈ T −, we can express this solution as a convex combination of the

extreme points in Ω, that is,

(bt,dt,at) =
∑

(b,d,a)∈XΩ

(b,d,a)λt(b,d,a),
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such that λt(b,d,a)≥ 0 for all (b,d,a)∈XΩ and
∑

(b,d,a)∈XΩ λt(b,d,a) = 1. When t= T , we scale

the solution by a factor (1−β) to ensure it is contained in Ω and obtain

(1−β)(bT ,dT ,aT ) =
∑

(b,d,a)∈XΩ

(b,d,a)λT (b,d,a),

with λT (b,d,a)≥ 0 for all (b,d,a)∈XΩ and
∑

(b,d,a)∈XΩ λT (b,d,a) = 1. Now, we can construct a

solution to AFDT (b0,d0) by defining

πt(b,d,a) =


λt(b,d,a)

1−1{t=T}β
, if (b,d,a)∈XΩ,

0, otherwise,
∀(b,d,a)∈X , t∈ T .

This solution satisfies the constraints in AFDT (b0,d0) and has the same objective value as the

corresponding solution to ÂFDT (b0,d0).

Combining both steps completes the proof.

Proof of Proposition 3

We first establish the monotonicity of zT (b0,d0) in Part (i).

Suppose T > 0, and let (â∗, b̂∗, q̂∗) be an optimal solution to AFDT (b0,d0). Given this solution,

we construct a solution (ã, b̃, q̃) to AFDT+1(b0,d0) by defining

ãt,m,n =


â∗t,m,n, if t < T ,
(1−β)â∗T,m,n, if t= T ,
â∗T,m,n, if t= T + 1,

∀m∈M, n∈N , t∈ T ∪{T + 1},

b̃t,m =


b̂∗t,m, if t < T ,

(1−β)b̂∗T,m, if t= T ,

b̂∗T,m, if t= T + 1,

∀m∈M−,∈ T ∪{T + 1},

q̃m = q̂∗m, ∀m∈M−.

Observe that the solution value obtained with this construction equals zT (b0,d0). Since

AFDT+1(b0,d0) is a maximization problem, we only need to show that the solution (ã, b̃, q̃)

satisfies the constraints in AFDT+1(b0,d0). Constraints (19), (20), and (21) are satisfied by con-

struction, as is constraint (18) when t≤ T .

To show that constraint (18) is satisfied when t= T + 1, consider any m∈M−. We have

(1−β)b̃T+1,m− b̃T,m+1−
∑
n∈N

b̃T,m+1,n = (1−β)

(
b̂∗T,m− b̂∗T,m+1−

∑
n∈N

b̂∗T,m+1,n

)
= 0,

where the first equality follows by the definition of (ã, b̃, q̃) and the last equality follows because

constraint (20) holds for any solution to AFDT (b0,d0).
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To establish Part (ii), let (â∗, b̂∗, q̂∗) be an optimal solution to AFDT (b0,d0) when T ≥M − 1,

and suppose that q̂∗m̄ > 0 for some m̄∈M−. We proceed to construct a solution to AFDT (b0,d0)

by modifying the values of (â∗, b̂∗, q̂∗) such that q̂∗m̄ will equal 0 while retaining feasibility. With

ρm̄ as defined in (22), the objective value of the modified solution will be at least as large as the

objective value of (â∗, b̂∗, q̂∗), establishing the desired result.

As a first step, we note that constraint (18) implies that any decrease in q̂∗m̄ from a positive value

to 0 leads to an increase in b̂∗0,m̄ and potentially other b̂∗t′,m′ such that t′ +m′ = m̄. Specifically,

according to constraint (18) we have

b̂∗0,m̄ = b0,m̄− q̂∗m̄,

b̂∗1,m̄−1 = b̂∗0,m̄ +
∑
n∈N

â∗0,m̄,n =
∑
n∈N

â∗0,m̄,n + b0,m̄− q̂∗m̄,

· · · · · · · · ·

b̂∗m̄−1,1 =
m̄−2∑
t′=0

∑
n∈N

â∗t′,m̄−t′,n + b0,m̄− q̂∗m̄.

Plugging the above into (20), we then observe that all the following constraints must hold:

∑
n∈N

â∗0,m̄,n ≤C − b0,m̄ + q̂∗m̄,

1∑
t′=0

∑
n∈N

â∗t′,m̄−t′,n ≤C − b0,m̄ + q̂∗m̄,

· · · · · · · · ·
m̄−1∑
t′=0

∑
n∈N

â∗t′,m̄−t′,n ≤C − b0,m̄ + q̂∗m̄. (28)

To ensure that these constraints remain feasible when reducing q̂∗m̄ to 0, some values â∗t′,m′,n where

t′+m′ = m̄ will also need to be decreased. Due to the non-negativity of â∗, it is sufficient to only

consider the last inequality (28). In particular, if (28) becomes infeasible when decreasing q̂∗m̄ to 0,

feasibility can be restored by reducing â∗t′,m′,n for some t′ and m′ such that t′+m′ = m̄. However,

equation (22) defines ρm̄ as the maximum of the objective function coefficients of the corresponding

â∗t′,m′,n variables, that is,

ρm̄ = max
t′∈{1,...,m̄},

n∈N

βm̄−t
′
vt′,n, ∀m̄∈M−.

Therefore, we observe that such modifications do not lower the objective function value, which

completes the proof.
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Proof of Proposition 4

The proof proceeds in two steps. First, we bound the difference in the objective values between

ÂFDT (b0,d0) and AFDT (b0,d0) as a function of optimal solutions to both ÂFDT (b0,d0) and

the dual of AFDT (b0,d0). In the second step, we bound the optimal values of the dual variables.

We establish these results in the following two lemmas.

Lemma 1. Suppose T > 0. Let (a∗,b∗) be an optimal solution for the reduced formulation

ÂFDT (b0,d0), and let (U∗, V ∗,W ∗,Z∗) be an optimal solution to the dual of AFDT (b0,d0). Then,

z̃T (b0,d0)− zT (b0,d0)

≤
∑

m∈M−

(
(1−β)V ∗T,m +βZ∗m−βZ∗m−1

)
b∗T,m

−
∑

m∈M−
V ∗T,m

(
b̂∗T−1,m+1 +

∑
n∈N

â∗T−1,m+1,n

)
−
∑

m∈M−
βZ∗m

(∑
n∈N

â∗T,m+1,n

)
, (29)

where we assume Z∗0 = 0.

Proof of Lemma 1: To establish a bound on the gap between the reduced formulation

ÂFDT (b0,d0) and the auxiliary program AFDT (b0,d0), we start by taking the Lagrangian relax-

ation of AFDT (b0,d0) with respect to constraint (18) with t= T and constraint (19) to obtain

LT (b0,d0, VT ,Z) =

max
â,b̂,q̂

∑
t∈T ,

m∈M,n∈N

βtvm,nât,m,n−
∑

m∈M−
ρmq̂m

−
∑

m∈M−
VT,m

(
(1−β)b̂T,m− b̂T−1,m+1−

∑
n∈N

âT−1,m+1,n

)

−
∑

m∈M−
βZm

(
b̂T,m− b̂T,m+1−

∑
n∈N

âT,m+1,n

)
s.t. (18), (20), (21),

â, b̂, q̂ ≥ 0.

Rearranging terms and accounting for the fact that bT,M = 0, we obtain

LT (b0,d0, VT ,Z) =

max
â,b̂,q̂

∑
t∈T ,

m∈M,n∈N

βtvm,nât,m,n−
∑

m∈M−
ρmq̂m−

∑
m∈M−

((1−β)VT,m +βZm−βZm−1) b̂T,m

+
∑

m∈M−
VT,m

(
b̂T−1,m+1 +

∑
n∈N

âT−1,m+1,n

)
+
∑

m∈M−
βZm

(∑
n∈N

âT,m+1,n

)
s.t. (18), (20), (21),
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â, b̂, q̂ ≥ 0.

Now, let (V ∗T ,Z
∗) be optimal Lagrangian multipliers and let (â∗, b̂∗) be an optimal solution for the

reduced problem ÂFDT (b0,d0). Because (â∗, b̂∗) satisfies constraints (18) (when t < T ), (20) and

(21) with q̂m = 0, we have∑
t∈T ,

m∈M,n∈N

βtvm,nâ
∗
t,m,n−

∑
m∈M−

(
(1−β)V ∗T,m +βZ∗m−βZ∗m−1

)
b̂∗T,m

+
∑

m∈M−
V ∗T,m

(
b̂∗T−1,m+1 +

∑
n∈N

â∗T−1,m+1,n

)
+
∑

m∈M−
βZ∗m

(∑
n∈N

â∗T,m+1,n

)
≤LT (b0,d0, V

∗
T ,Z

∗).

Since AFDT (b0,d0) is a linear program, it follows that zT (b0,d0) = LT (b0,d0, V
∗
T ,Z

∗).

Using z̃T (b0,d0) =
∑

t∈T ,m∈M,n∈N β
tvm,na

∗
t,m,n and taking the difference between z̃T (b0,d0) and

LT (b0,d0, V
∗
T ,Z

∗) leads to (29).

Lemma 2. Suppose T > 0. Then, there exists an optimal solution (U∗, V ∗,W ∗,Z∗) to the dual of

AFDT (b0,d0) such that for all m∈M−

(i) (1−β)V ∗T,m +βZ∗m−βZ∗m−1 ≤ 0,

(ii) −V ∗T,m ≤ εT,m, and

(iii) −βZ∗m ≤ γT,m,

where

εT,m =


max

ρT+m, max
k∈1,...,min(T,M−m),

n∈N

βT−kvm+k,n

 , if T +m≤M − 1;

max
k∈1,...,min(T,M−m),

n∈N

βT−kvm+k,n, o.w.,
∀m∈M−,

and γT,m is defined recursively as

γT,m =


max
n∈N

βTvM,n, if m=M − 1;

max
(

max
n∈N

βTvm+1,n, (1−β)εT,m+1 + γT,m+1

)
, o.w.,

∀m∈M−.

Proof of Lemma 2: As a first step, we state the dual of AFDT (b0,d0) as follows:

min
U,V,W,Z

∑
m∈M−

b0,mV0,m +
∑

t∈T ,m∈M

C

1−1{t=T}β
Ut,m +

∑
n∈N

d0,nW0,n +
∑

t∈T ,n∈N
t>0

d̄n
1−1{t=T}β

Wt,n

s.t. Ut,m−Vt+1,m−1 +Vt,m ≥ 0, ∀t∈ T −,m∈M−, (30)

Ut,m−Vt+1,m−1 +Wt,n ≥ βtvm,n, ∀t∈ T −,m∈M, n∈N , (31)

UT,m + (1−β)VT,m +βZm−βZm−1 ≥ 0, ∀m∈M−, (32)
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UT,m−βZm−1 +WT,n ≥ βTvm,n, ∀m∈M, n∈N , (33)

V0,m ≥ − ρm, ∀m∈M, n∈N , (34)

Ut,m,Wt,n ≥ 0, ∀t∈ T ,m∈M, n∈N .

Here, we assume Zt,0 = 0 and Vt,0 = 0 for all t∈ T .

Consider an optimal solution (U∗, V ∗,W ∗,Z∗) to this dual formulation. To establish (i), suppose

that for some m∈M− we have

(1−β)V ∗T,m +βZ∗m−βZ∗m−1 = δ > 0.

Because UT,m ≥ 0, this implies that constraint (32) is non-binding for m. Therefore, constraint (32)

also holds if Z∗m′ is decreased by δ for all m′ ∈ {m, . . . ,M − 1}. Observe that such decreases do not

impact the feasibility of constraint (33) and do not change the objective value.

To establish (ii), we first extend the definition of ε and let

εt,m =


ρm, if t= 0,
max
n∈N

βt−1vM,n, if t > 0 and m=M − 1,

max(εt−1,m+1,max
n∈N

βt−1vm+1,n), o.w.,
∀t∈ T ,m∈M−.

Next, we show that −V ∗t,m ≤ εt,m for all t∈ T and m∈M−. Given constraint (34), this clearly holds

if t= 0. Now, consider some t > 0 and suppose that for some δ > 0

−V ∗t,M−1 = max
n∈N

βt−1vM,n + δ.

Because Ut−1,M and Wt,n are non-negative for all n ∈N , constraint (31) is non-binding for t and

all n ∈ N when m = M . Therefore, the constraint continues to hold if we increase V ∗t,M−1 by δ.

Note that this does not impact the feasibility of constraint (32), and that V ∗t,M−1 does not occur in

constraint (30). Since t > 0, this does not impact the objective value.

Similarly, consider some t > 0 and m<M − 1 and suppose that

−V ∗t,m > εt−1,m+1 and −V ∗t,m >max
n∈N

βt−1vm+1,n.

By induction, we have −V ∗t−1,m+1 ≤ εt−1,m+1 and therefore constraints (30) and (31) are non-binding

for t−1 and m+ 1. Again therefore, we can increase V ∗t,m until −V ∗t,m = εt,m without impacting the

feasibility of constraints (30)–(32).

Finally, we establish the last condition by induction. First, suppose that

−βZ∗M−1 >max
n∈N

βTvM,n = γT,M−1.
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Then, constraint (33) is non-binding and Z∗M−1 can be increased until its value equals
γT,M−1

β
. Note

that this does not impact the feasibility of constraint (32), because Z∗M−1 only occurs in the left

hand side with a positive coefficient. Next, consider some m<M−1 given that we have established

that −βZ∗m+1 ≤ γT,m+1 and −V ∗T,m+1 ≤ εT,m+1. Now, suppose that

−βZ∗m >max
n∈N

βTvm+1,n and −βZ∗m > (1−β)εT,m+1 + γT,m+1.

Then, constraints (32) and (33) are non-binding for m+ 1, and we can increase Z∗m until −βZ∗m =

γT,m without impacting feasibility.

Proposition 4 immediately follows from these two lemmas, by substituting the bounds obtained

in Lemma 2 for the relevant terms in Lemma 1.

Proof of Proposition 5

Overall, the proof of Proposition 5 proceeds as follows. Given a fractional optimal allocation a∗,

we first calculate the “fractional part” of a∗ and observe that this defines a fractional solution to a

transportation problem. Next, we normalize the supply and demand to obtain a doubly stochastic

matrix {ãmi,nj}. This allows us to apply Birkhoff’s algorithm (also known as the Birkhoff–von Neu-

mann decomposition), which takes a doubly stochastic matrix and returns a convex combination

of permutation matrices. Finally, we reconstruct a feasible integer allocation for each permutation.

Specifically, given a (fractional) solution a∗0 ∈A∗(b,d) we start by defining cm = C − bm for all

m∈M. We capture the slack in the allocation by adding nodes using

M+ =M∪{0}, N+ =N ∪{0}.

and defining c0 =
∑

n∈N dn and d0 =
∑

m∈M cm. Using these definitions, we introduce the slack

variables

a∗0,m,0 = cm−
∑
n∈N

a∗0,m,n, ∀m∈M,

a∗0,0,n = dn−
∑
m∈M

a∗0,m,n, ∀n∈N ,

a∗0,0,0 =
∑
m∈M

∑
n∈N

a∗0,m,n.

By construction, it follows that ∑
n∈N+

a∗0,m,n = cm, ∀m∈M+,∑
m∈M+

a∗0,m,n = dn, ∀n∈N+.
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Next, we define

âm,n = a∗0,m,n−ba∗0,m,nc, ∀m∈M+, n∈N+,

ĉm = cm−
∑
n∈N+

ba∗0,m,nc, ∀m∈M+,

d̂n = dn−
∑

m∈M+

ba∗0,m,nc, ∀n∈N+.

As a result, we have

∑
n∈N+

âm,n = ĉm, ∀m∈M+,∑
m∈M+

âm,n = d̂n, ∀n∈N+.

Observe that
∑

m∈M+
ĉm =

∑
n∈N+

d̂n by construction, and that ĉm ≤N + 1 for all m ∈M+ and

d̂n ≤M + 1 for all n ∈ N+ . Without loss of generality, we can also assume that ĉm > 0 for all

m∈M+ and that d̂n > 0 for all n∈N+. In addition, we note that 0≤ âm,n ≤ 1 for all m,n.

We proceed by splitting the supply and demand nodes into nodes with unit supply and demand.

Specifically, we define M̃ = {(m,i) : m ∈ M+, i ∈ {1, . . . , ĉm}}, and Ñ = {(n, j) : n ∈ N+, j ∈

{1, . . . , d̂n}}. We also define

ãmi,nj =
âm,n

ĉmd̂n
.

Thus yields

∑
(n,j)∈Ñ

ãmi,nj = 1, ∀(m,i)∈ M̃,∑
(m,i)∈M̃

ãmi,nj = 1, ∀(n, j)∈ Ñ .

The entries ãmi,nj therefore define a doubly stochastic matrix. Using Birkhoff’s algorithm (Brualdi

1982), we can express this matrix as a convex combination of permutation matrices. Thus

ã=
K∑
k=1

λkã
k,

where λk ≥ 0 for k= 1, . . . ,K and
∑K

k=1 λk = 1, and where ãk is a permutation matrix (i.e., a (0,1)

matrix whose rows and columns sum to one). It is known that K ≤ (|M̃| − 1)2 + 1 (Marcus and

Ree 1959); that is, the number of permutation matrices in the convex combination is polynomially

bounded in the dimension of the doubly stochastic matrix. Because ĉm ≤N + 1 for all m ∈M+

and d̂n ≤M + 1 for all n ∈ N+, it therefore follows that the number is polynomially bounded in

the number of days in the booking horizon and customer classes as well.
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Putting it all together, we have that

a∗0 =
K∑
k=1

λka
k,

with

akm,n = ba∗0,m,nc+

ĉm∑
i=1

d̂n∑
j=1

ãkmi,nj ∀m∈M, n∈N , k ∈ {1, . . . ,K}.

We can verify that ak ∈A(b,d) for all k. This completes the proof.


