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The approximate linear programming approach has received significant attention in the network revenue

management literature. A popular approximation in the existing literature is separable piecewise linear

(SPL) approximation, which estimates the value of each unit of each resource over time. SPL approximation

can be used to construct resource-based bid-price policies. In this paper, we propose a product-based SPL

approximation. The coefficients of the product-based SPL approximation can be interpreted as each prod-

uct’s revenue contribution to the value of each unit of each resource in a given period. We show that the

resulting approximate linear program (ALP) admits compact reformulations, like its resource-based coun-

terpart. Furthermore, the new approximation allows us to derive a set of valid inequalities to (i) speed up

the computation and (ii) select optimal solutions to construct more effective policies. We conduct an exten-

sive numerical study to illustrate our results. In a set of 192 problem instances, bid-price policies based on

the new approximation generate higher expected revenues than resource-based bid-price policies, with an

average revenue lift of 0.72% and a maximum revenue lift of 5.3%. In addition, the new approximation can

be solved 1.42 times faster than the resource-based approximation and shows better numerical stability. The

valid inequalities derived from the new approximation further improve the computational performance and

are critical for achieving additional gains in the expected revenue. The policy performance is competitive

compared with the dynamic programming decomposition method, which is the strongest heuristic known in

the literature.
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1. Introduction

Network revenue management (NRM) entails managing a network of resources with limited capac-

ities, which are consumed by different products over time. Product requests arrive over a finite

selling horizon. The objective is to maximize the total expected revenue by accepting or rejecting

these requests. This problem can be formulated as a dynamic program, where the state represents

the remaining capacities of the resources (Talluri and van Ryzin 2004). It can be shown that an

optimal policy accepts a booking request, as long as there are sufficient resources and the price

exceeds the marginal cost. However, the dynamic programming formulation suffers from the well-
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known “curse of dimensionality.” Therefore, practical solution methods resort to approximations

and heuristics.

The approximate linear programming approach has received significant attention in the literature

(de Farias and Van Roy 2003, de Farias and Van Roy 2004). The main idea of this approach

is to represent the value function of the dynamic program by a weighted sum of a collection

of basis functions, which dramatically reduces the number of variables. Building on this idea,

Adelman (2007) introduces a solution framework for the NRM problem by approximating the value

function as an affine function of the state. He shows that the resulting affine approximate linear

program (ALP) produces a tighter upper bound on the total expected revenue than the widely used

deterministic linear program (DLP) (Talluri and van Ryzin 1998, Cooper 2002). The coefficients

of the affine approximation, interpreted as the marginal values of the resources in each period, can

be used to construct a dynamic time-dependent bid-price policy, which is shown to be superior

to the static bid-price policies obtained from DLP (Williamson 1992, Talluri and van Ryzin 1998,

Cooper 2002).

A stream of follow-up work to Adelman (2007) considers stronger functional approximations that

produce tighter upper bounds and possibly stronger heuristic policies. A popular approximation

is the separable piecewise linear (SPL) approximation (Farias and Van Roy 2007, Meissner and

Strauss 2012). Topaloglu (2009) proposes a Lagrangian relaxation approach to the NRM problem,

which is subsequently shown to be equivalent to the SPL approximation (Kunnumkal and Talluri

2016, Vossen and Zhang 2015b). In this paper, we refer to the SPL approximation as the resource-

based SPL approximation to differentiate it from an alternative approximation that we propose.

The coefficients of the resource-based SPL approximation can be interpreted as the marginal

values of resources in each period and immediately imply a dynamic policy that is both time and

resource-level dependent. The policy builds on the widely used idea of bid-price control, where

a product request is accepted as long as the price exceeds the sum of the values of the utilized

resources (Talluri and van Ryzin 1998). We call such policies resource-based bid-price policies.

Talluri and van Ryzin (1998) use an example to show that the resource-based bid-price policies

ignore the network effect among products sharing the same resources, and are therefore suboptimal

in general.

We propose an alternative product-based SPL approximation to alleviate the shortcomings of

the resource-based SPL approximation and its corresponding policies. We also construct a new

policy based on the proposed approximation, which we call the product-based bid-price policy. The

novel feature of the new policy is that it keeps track of the resource levels and the feasibility of

offering each product. Thus, it takes the network effect into account when deciding whether to

accept a product request. The new policy is optimal for the example from Talluri and van Ryzin
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(1998). A numerical study with 192 problem instances shows that the product-based bid-price

policy can generate higher expected revenues than the resource-based bid-price policy, with an

average revenue gain of 0.72% and a maximum of 5.3%. The magnitude of the revenue improvement

is quite substantial, considering the razor-thin revenue improvement typically reported in the NRM

literature. We also show that the policy is near-optimal, with an average gap of only 1.8% from an

upper bound. More importantly, we show that the product-based bid-price policy is competitive to

the dynamic programming decomposition heuristic (Liu and van Ryzin 2008, Zhang and Adelman

2009), which is considered the strongest heuristic for the NRM problem (Ma et al. 2020). In

particular, the product-based bid-price policy produces a revenue lift of 0.48% on a set of hub-and-

spoke instances.

The product-based bid-price policy utilizes the value of product-resource pairs, which is not

obtainable through the resource-based SPL approximation. The coefficients of the product-based

SPL approximation can be interpreted as the revenue contribution of each product to the value of

each unit of each resource in a given period. Therefore, the product-based SPL approximation can

be viewed as a generalization of the resource-based SPL approximation. Indeed, the resource-based

SPL approximation can be recovered from the product-based SPL approximation.

ALPs are known to pose computational challenges due to their size. In the literature, specialized

algorithms such as column generation (Adelman 2007, Meissner and Strauss 2012) and constraint

sampling (de Farias and Van Roy 2004, Farias and Van Roy 2007) are proposed. However, these

specialized algorithms are often very time consuming, even for moderately sized problems. For

example, Meissner and Strauss (2012) show that it can take more than 10 hours to solve a small

NRM problem with the resource-based SPL approximation. Tong and Topaloglu (2014) establish a

compact reformulation for the affine ALPs for NRM. Subsequently, Vossen and Zhang (2015b) show

that the ALPs with the resource-based SPL approximation for NRM admit compact, equivalent

linear programming formulations, which they call reduced programs. These reduced programs can

be solved orders of magnitude faster than the original formulations. We show that the product-

based SPL approximation also has a corresponding reduced program, which substantially alleviates

the computational challenge. Moreover, our computational results demonstrate that the reduced

program of the product-based SPL approximation has more robust computational performance

than the resource-based one; it can be solved faster and has better numerical stability.

The product-based SPL approximation also allows us to derive a set of valid inequalities, which

we call product-value inequalities, to further tighten the reduced program. These product-value

inequalities build on the observation that the difference of a product’s bid-prices in two consecutive

periods is bounded, as there is no more than one customer request for the product in each period.
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In our study, adding product-value inequalities significantly changes policy behavior, and is there-

fore critical to policy performance. Product-value inequalities improve the expected revenue by

approximately 0.68% on average. The maximum gain can be over 5%. In terms of computational

performance, adding product-value inequalities can speed up the computation by about 25%. Taken

together, our best implementation of the product-based SPL approximation is 1.42 times faster

than that of the resource-based SPL approximation. Furthermore, we can achieve better numerical

stability by solving more instances optimally.

Adding valid inequalities to speed up the computation of large-scale linear optimization problems

is a well-known idea in the relevant literature (Adelman 2007, Vossen and Zhang 2015a). Our

numerical results demonstrate that, in addition to the computational benefits, the valid inequalities

also help us choose better optimal solutions for policy construction. Adding additional constraints

(inequalities) is used as a way to derive relaxations of ALPs and reduce distortions in the solutions

of ALPs in the literature (Nadarajah et al. 2015, Nadarajah and Secomandi 2020). One difference

is that the inequalities in Nadarajah et al. (2015) and Nadarajah and Secomandi (2020), while

well-motivated, are not necessarily valid in the sense that, after adding them to ALPs, the resulting

relaxations of ALPs may not produce valid upper bounds.

The remainder of the paper is organized as follows. Section 2 formulates the NRM problem,

reviews the resource-based SPL approximation, and illustrates the non-optimality of the resource-

based bid-price policy using an example from Talluri and van Ryzin (1998). Section 3 presents the

product-based SPL approximation. Section 4 reports the computational results, and Section 5 con-

cludes. All technical proofs are in Appendix EC.1. Appendices EC.2–EC.3 report detailed numerical

results.

2. Preliminaries: The ALP Approach for Network Revenue
Management

This section introduces the dynamic programming formulation and the ALP approach for the NRM

problem. We illustrate the non-optimality of the ALP using an example from Talluri and van Ryzin

(1998).

There is a set of resources given by I = {1, . . . , I}, where I is the total number of resources. We

reserve index i for resources. The resource capacity is given by the vector c= (c1, . . . , cI), where

ci is the capacity for resource i ∈ I. We reserve k as the index for the capacity levels. The set

of products is denoted by J = {1, . . . , J}, where J is the total number of products. The price of

product j is fj. We save j and m as indices for the products. Let A= [aij] denote an I×J matrix,

where aij ∈ {0,1} is the amount of resource i consumed by product j. We use aj and ai to denote

the column and row of matrix A, respectively. With a slight abuse of notation, we also use aj ⊆ I
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to denote the set of resources used by product j and use ai ⊆J to denote the set of products using

resource i.

There are T discrete periods in the selling horizon. Time counts forward, so t = 1 is the first

period. At time T +1, unused resources perish and there is no salvage value. We reserve t as the

index for the periods. As is standard in the NRM literature, we assume that the period is “small”

such that there is at most one customer arrival in each period. Each arriving customer requests a

specific product. A customer that requests product j is called a class-j customer. We assume that

the probability of a class-j customer arriving in period t is λt,j, with
!

j∈J λt,j ≤ 1. The probability

of no customer arrival is 1−
!

j∈J λt,j. We focus on the independent demand model here because it

is relatively simple to estimate and often provides satisfactory performance in practice (Van Ryzin

2005, Gallego et al. 2019). Moreover, it is a steppingstone for considering more complicated discrete

choice models in the future.

The state of the system is given by x = (x1, . . . , xI), where xi is the remaining capacity for

resource i. The state space in period t is then given by

Xt =

"
{c}, if t= 1,#
x∈ZI

+ : x≤ c
$
, if t≥ 2.

The objective is to maximize the total expected revenue by deciding which product request to

accept given the state in each period t. The decision can be denoted by a J-vector ut, where

ut,j ∈ {0,1} denotes whether product j is accepted or not in period t. The decision vector ut must

satisfy the resource constraint; i.e., a product can only be accepted if there are sufficient resources

available. The action space in state x is given by

U(x) =
#
ut ∈ {0,1}J : ajut,j ≤ x, ∀j ∈J

$
.

Let vt(x) be the value function, which is the maximum expected revenue from period t onward

given state x at the beginning of period t. The optimality equations are given by

vt(x) =maxut∈U(x)

!
j λt,jut,j (fj + vt+1(x−aj))+

%
1−

!
j λt,jut,j

&
vt+1(x), ∀t,x. (1)

The boundary conditions are vT+1(x) = 0 for all x∈XT+1.

It can be shown that an optimal policy accepts a booking request as long as there are sufficient

resources and the price exceeds the marginal cost. That is, it is optimal to take

ut,j =

"'
i∈aj 1(xi ≥ 1), if fj ≥ vt+1(x)− vt+1(x−aj),

0, otherwise,
∀t,x, j. (2)

The dynamic program (1) can be equivalently written as a linear program as follows (Adelman

2007):
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(LP) min
{vt(·)}∀t

v1(c)

s.t. vt(x)− vt+1(x)+
(

j

λt,jut,j

)
vt+1(x)− vt+1(x−aj)

*
≥
(

j

λt,jut,jfj,

∀t,x∈Xt,ut ∈ U(x). (3)

However, the number of variables and constraints in (LP) increases exponentially in the number

of resources I and the number of products J . Thus, solving (LP) is as difficult as solving the

dynamic program (1). To achieve tractability, a key idea in the ALP approach is to represent the

value function vt(x) by the weighted basis functions:

vt(x)≈ θt +
(

b∈B

Vt,bφb(x), ∀t,x∈Xt, (4)

where φb : X → R for b ∈ B is a set of prespecified basis functions and B is some index set. The

parameter Vt,b is the weight of the basis function φb(·) in period t, and θt is a constant offset.

Two common approximation architectures for the NRM problem are affine and SPL approxima-

tions. In this paper, we focus on the SPL approximation, which is known to be stronger than the

affine approximation. The SPL approximation is given by (Farias and Van Roy 2007, Meissner and

Strauss 2012, Vossen and Zhang 2015b):

vt(x)≈ θt +
(

i

xi(

k=1

Vt,i,k, ∀t,x∈Xt. (5)

In (5), Vt,i,k can be interpreted as the value of the k-th unit of resource i in period t. To differentiate

from the approximation architecture that we propose later in the paper, we call the approximation

(5) the resource-based SPL approximation.

Substituting (5) into (LP) yields a problem with a polynomial number of variables. However, it

still has exponentially many constraints. Specialized column generation (Adelman 2007, Meissner

and Strauss 2012) and constraint sampling (de Farias and Van Roy 2004, Farias and Van Roy 2007)

methods were developed to handle these constraints. More recently, Vossen and Zhang (2015b)

show that the ALP associated with the approximation in (5) can be written compactly as the

following reduced program:

(R) zR =max
p,q,z

(

t,j

λt,jfjqt,j

s.t. pt,i,k =

+
,,-

,,.

1, if t= 1,

pt−1,i,k

−
!
j∈ai

λt−1,j(zt−1,i,j,k − zt−1,i,j,k+1), if t > 1,
∀t, i, k, (6)

qt,j = zt,i,j,1, ∀t, i, j : ai,j = 1, (7)

zt,i,j,k+1 ≤ zt,i,j,k, ∀t, i, j, k : ai,j = 1, (8)

zt,i,j,k ≤ pt,i,k, ∀t, i, j, k : ai,j = 1. (9)
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The dual solution to (R) can be used to construct a bid-price control policy. According to the

definition in Talluri and van Ryzin (1998), a bid-price policy specifies a set of bid-prices for each

resource at each point in time, such that the request for a product is accepted if and only if there

is available capacity and the price exceeds the sum of the bid-prices for all units of the resources

used by the product. It is natural to use the optimal dual values of constraint (6), {V ∗
t,i,k}∀t,i,k, to

approximate the value function following (5) as follows:

vt(x)≈ vRt (x) = θt +
(

i

xi(

k=1

V ∗
t,i,k, ∀t,x∈Xt. (10)

We call (10) the resource-based value function approximation. A bid-price policy can be constructed

such that

ut,j =

+
-

.

'
i∈aj 1(xi ≥ 1), if fj ≥

!
i∈aj

V ∗
t+1,i,xi

,

0, otherwise,
∀t,x, j. (11)

We refer to (11) as the resource-based bid-price policy.

Talluri and van Ryzin (1998) use an example to illustrate the non-optimality of a particular form

of bid-price policies. Their example can also be used to show that the bid-price policy specified

in (11) is not optimal. We replicate their example below but change the time index to match our

notation.

Example 1 (Talluri and van Ryzin (1998), Section 3.1). Consider a network with two

resources and three products. There are two local products (P1 and P2), each with a price of $250,

and one through product (P3) with a price of $500. Each local product uses one resource, while the

through product uses both resources. Each resource has one unit of capacity. The problem data

are shown in Table 1.

Period (t) Product: aj Price Probability

1 P1: (1, 0) $250 0.3
P2: (0, 1) $250 0.3
P3: (1, 1) $500 0.4

2 No arrival 0.2
P3: (1, 1) $500 0.8

Table 1: Problem Data for Example 1.

In period 1, the arrival probability for each local product is 0.3 and is 0.4 for the through product.

In period 2, there is no demand for the local products, and the arrival probability for the through

product is 0.8. An optimal policy will reject both local products and only accept the through

product in period 1. If the through product does not arrive in period 1, the policy will accept the

through product in period 2 if it arrives. The optimal expected revenue is $440.
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To implement the optimal policy in Example 1, the resource-based bid-prices need to satisfy

V2,1,1 > 250, V2,2,1 > 250, and V2,1,1+V2,2,1 ≤ 500, which obviously is impossible. The best a resource-

based bid-price policy can do in this example is to have V2,1,1 > 250, V2,2,1 > 250, and V2,1,1+V2,2,1 >

500. Thus, the resulting policy rejects all demand in period 1 and accepts only the through itinerary

(if it arrives) in period 2, yielding an expected revenue of $400. The bad news is that even this policy

is not achievable by any dual optimal solution of (R) (and the resource-based SPL approximation)

because it can be verified that for this example, the maximum objective value of (R), zR, is 470,

which is strictly smaller than 500, and none of (R)’s dual optimal solutions can satisfy these

inequalities. The best policy formed by a dual optimal solution of (R) yields an expected revenue of

$350 by accepting all demand in period 1. In the next section, we show that a new approximation

can overcome the pitfall of the resource-based SPL approximation in this example.

3. A Product-Based Approximation for Network Revenue
Management

This section proposes a product-based ALP for NRM. Section 3.1 presents a variant of the bid-

price policy to avoid the pitfall mentioned at the end of Section 2. To facilitate this policy, we

propose a new functional approximation for the NRM problem. We also discuss the strength of

this approximation. Section 3.2 shows that the resulting ALP admits a compact reformulation (a

reduced program), similar to the resource-based SPL approximation. Section 3.3 provides a set of

valid inequalities for the ALP. Our numerical experiments later in the paper show that these valid

inequalities improve both the policy and computational performance.

3.1. A Policy Taking the Network Effect into Account

The policy (11) is not optimal because it is based on the approximation (5). In this section, we

propose a variant of (11) to alleviate the deviation from optimality.

The key motivation for the new policy is that the resource-based bid-price policy ignores the

network effect among products sharing the same resources. Consider two products j and m, which

share resource i but have different resource requirements; i.e., i∈ aj ∩am and aj ∕= am. Suppose the

remaining capacity of resource i is one unit. According to the definition in Talluri and van Ryzin

(1998), whether a product is accepted is completely determined by the bid-prices of the resources

consumed by that product but is independent of the bid-prices of the other resources. Because

resource i only has one unit remaining, accepting product j would prevent us from accepting

product m in the future. This notion suggests that the impact on product m should be taken

into account when deciding whether to accept a request for product j. How this can be achieved,

however, is unclear under the resource-based SPL approximation.

As a potential remedy, we propose the following product-based SPL approximation:
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vt(x)≈ θt +
(

i

(

j∈ai

xi(

k=1

Wt,i,j,k, ∀t,x∈Xt. (12)

The term Wt,i,j,k can be interpreted as product j’s revenue contribution to the value of the k-th unit

of resource i in period t. The product-based SPL approximation provides more granular information

than the resource-based SPL approximation, given that the latter can be recovered from the former

as follows:

Vt,i,k =
(

j∈ai

Wt,i,j,k, ∀t, i, k. (13)

The product-based SPL approximation provides greater flexibility for constructing policies as

well. Clearly, we can construct the resource-based bid-price policy (11) via (13). More importantly,

we can interpret
!

i∈aj

!xi
k=1Wt,i,j,k as the total expected revenue of product j ∈J from period t

onward. Therefore, given a solution W ∗, the value function can be approximated as

vt(x)≈ vPt (x) = θt +
(

j

1
)
x≥ aj

*(

i∈aj

xi(

k=1

W ∗
t,i,j,k, ∀t,x∈Xt. (14)

We call (14) the product-based value function approximation. A salient feature of (14) is that it

allows us to incorporate the capacity constraint into the approximate value function. In particular,

the indicator function tracks the capacity of each product’s required resources and sets the expected

future revenues of products with insufficient resources to zero.

We can construct a policy by using (14) in (2) as follows. Consider two products j,m ∈ J . Let

xm,j = min
i′∈am∩aj

xi′ . As a convention, we take xm,j = 0 if am ∩aj = ∅. Thus, xm,j gives the minimum

capacity of the resources shared by products j and m; it takes the value of 0 if products j and m

do not share any resources. The bid-price that can be used to decide whether to accept product j

is then given by

∆vPt+1,j(x) = vPt+1,j(x)− vPt+1,j(x−aj)

= θt+1 +
(

m

1 (x≥ am)
(

i∈am

xi(

k=1

W ∗
t+1,i,m,k −

/
θt+1 +

(

m

1
)
x−aj ≥ am

* (

i∈am

xi−ai,j(

k=1

W ∗
t+1,i,m,k

0

=
(

m:am∩aj ∕=∅

"
1 (x≥ am)

(

i∈am

xi(

k=1

W ∗
t+1,i,m,k −1

)
x−aj ≥ am

* (

i∈am

xi−ai,j(

k=1

W ∗
t+1,i,m,k

1

=
(

m:am∩aj ∕=∅

"
1
)
xm,j = 1

* (

i∈am

xi(

k=1

W ∗
t+1,i,m,k +1

)
xm,j > 1

* (

i∈am∩aj

W ∗
t+1,i,m,xi

1
. (15)

The second equality holds because 1 (x≥ am) = 1 (x−aj ≥ am) when products m and j do not

share any resources. The last equality follows by considering three cases: (i) If xm,j > 1, 1 (x≥ am) =

1 and 1 (x−aj ≥ am) = 1; (ii) If xm,j = 1, 1 (x≥ am) = 1 and 1 (x−aj ≥ am) = 0; (iii) If xm,j = 0,

1 (x≥ am) = 0 and 1 (x−aj ≥ am) = 0.
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The corresponding bid-price policy is given by

ut,j =

"'
i∈aj 1(xi ≥ 1), if fj ≥∆vPt+1,j(x),

0, otherwise,
∀t,x, j. (16)

We call this policy the product-based bid-price policy. As a side note, we point out that the policy

does not comply with the definition of the bid-price policies in Talluri and van Ryzin (1998). Based

on this policy, when a request of product j arrives, we consider all products that share resources

with product j to decide whether to accept the request. Let m be a product that shares at least

one resource with product j. If any of the shared resources for products j and m have only one

unit left, we will not be able to accept future requests for product m if the request for product j

is accepted. In this case, we add the expected future revenue of product m,
!

i∈am

!xi
k=1W

∗
t+1,i,m,k,

to the bid-price. However, if all shared resources for products j and m have capacities that are

strictly higher than 1, then we only include
!

i∈am∩aj
W ∗

t+1,i,m,xi
in the bid-price.

To emphasize the difference between the product- and resource-based bid-prices, we rewrite the

product-based bid-prices (15) as follows:

(

m:am∩aj ∕=∅

"
1
)
xm,j = 1

* (

i∈am

xi(

k=1

W ∗
t+1,i,m,k +1

)
xm,j > 1

* (

i∈am∩aj

W ∗
t+1,i,m,xi

1

=
(

i∈aj

(

m∈ai

W ∗
t+1,i,m,xi

+
(

m:am∩aj ∕=∅

+
-

.1
)
xm,j = 1

*
2

3
(

i∈am∩aj

xi−1(

k=1

W ∗
t+1,i,m,k +

(

i∈am\aj

xi(

k=1

W ∗
t+1,i,m,k

4

5

6
7

8 .

The first term,
!

i∈aj

!
m∈ai

W ∗
t+1,i,m,xi

, is the same as the resource-based bid-price policy based

on (11) via (13). Therefore, the product-based bid-price policy has a higher bid-price than the

resource-based bid-price policy when any shared resource has only one unit of capacity left. It is well

known that the main trade-off in the NRM problem is to strike a balance between the immediate

revenue from accepting a product request and the revenue from potentially more profitable product

requests in the future. The product-based bid-price policy uses more stringent bid-prices to protect

the capacity for potentially more profitable future product requests when the capacity is low.

In Example 1, the pitfall mentioned earlier is no longer a problem if we use the product-based

bid-price policy. An optimal solution based on the product-based SPL approximation is given by

W ∗
1,1,1,1 = 215,W ∗

1,2,2,1 = 255,W ∗
2,1,3,1 = 200,W ∗

2,2,3,1 = 200, and 0’s for the other variables. According

to (14), the value functions are approximated as: vP2 (1,1) = 400, vP2 (1,0) = vP2 (0,1) = vP2 (0,0) = 0.

In period 1, both local products are rejected because f1 = 250 < vP2 (1,1) − vP2 (1,0) = 400 and

f2 = 250 < vP2 (1,1) − vP2 (0,1) = 400. However, the through product is accepted as f3 = 500 >

vP2 (1,1)− vP2 (0,0) = 400. Then, in period 2, when there is enough capacity, an arriving request for

the through product is accepted because f3 = 500 > 0, given that W3,i,j,k = 0 for all i, j, k. This

policy yields the optimal expected revenue of $440.
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Given that we use the product-based value function approximation (14) to construct policies,

it is natural to consider solving the ALP corresponding to this approximation. That is, we may

consider the following value function approximation:

vt(x)≈ θt +
(

j

1
)
x≥ aj

*(

i∈aj

xi(

k=1

W t,i,j,k, ∀t,x∈Xt. (17)

The difficulty is that the ALP corresponding to the approximation (17), denoted by (DW ) shown

in Appendix EC.1.1, is computationally challenging. However, we show that it has an appealing

theoretical property: its approximation error is smaller than the resource-based SPL approximation.

Given an optimal solution (θ∗,W ∗) to (DW ), we can approximate the value functions as:

vt(x)≈ vWt (x) = θ∗t +
(

j

1
)
x≥ aj

*(

i∈aj

xi(

k=1

W ∗
t,i,j,k, ∀t,x∈Xt. (18)

Theorem 1. vWt (x) has a smaller approximation error than the resource-based value function

approximation vRt (x) for all t, x∈Xt.

While Theorem 1 provides an interesting theoretical result, it is not computationally viable to

solve (DW ) to optimality. (DW ) is a linear program with exponentially many constraints. The

pricing problem of its dual (or its own constraint separation problem) does not satisfy the conditions

in Lemma 2 in Vossen and Zhang (2015b). Thus, (DW ) does not have an equivalent compact

reformulation. We must resort to specialized algorithms such as column generation (Adelman 2007,

Meissner and Strauss 2012) or constraint sampling (de Farias and Van Roy 2004, Farias and Van

Roy 2007) methods, which impose significant computational burdens (see Meissner and Strauss

2012). To achieve computational efficiency, we solve the product-based SPL approximation, which

admits a compact reformulation (P) presented in Section 3.2, and construct a policy using (14). As

evident later in our computational studies, this strategy produces a fruitful outcome, as it strikes

a balance between computational tractability and a reduction in approximation errors.

3.2. The ALP Based on the Product-Based SPL Approximation

This section shows that the ALP based on the product-based SPL approximation admits an equiv-

alent compact reformulation, which we call the reduced program. This result echoes a similar one

for the resource-based SPL approximation shown in Vossen and Zhang (2015b).

Plugging (12) into (LP) and simplifying the constraints, we obtain

(D′) min
θ,W

θ1 +
(

j

(

i∈aj

ci(

k=1

W1,i,j,k

s.t. θt − θt+1 +
(

j

(

i∈aj

xi(

k=1

(Wt,i,j,k −Wt+1,i,j,k)

+
(

j

λt,jut,j

(

i∈aj

(

m∈ai

Wt+1,i,m,xi ≥
(

j

λt,jut,jfj, ∀t,x∈Xt,ut ∈ U(x). (19)
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Let h be the dual variables of constraint (19). The corresponding dual program is

(P′) max
h

(

t

(

x∈Xt,u∈U(x)

/
(

j

λt,jut,jfj

0
ht,x,u

s.t.
(

x∈Xt,u∈U(x)

ht,x,u = 1, ∀t, (20)

(

x∈Xt,u∈U(x)
:xi≥k

ht,x,u =

+
,,,,,,-

,,,,,,.

1, if t= 1,!
x∈Xt−1,u∈U(x)

:xi≥k

ht−1,x,u

−
!

x∈Xt−1,u∈U(x)
:xi=k

!
m

λt−1,mai,mut−1,jht−1,x,u, if t > 1,

∀t, i, j, k : ai,j = 1, (21)

h≥ 0.

Define the following variables: qt,j =
!

x∈Xt,u∈U(x) ut,jht,x,u, for all t and j, pt,i,k =
!

x∈Xt,u∈U(x)
:xi≥k

ht,x,u,

for all t, i, and k, zt,j,i,k =
!

x∈Xt,u∈U(x)
:xi≥k

ut,jht,x,u, for all t, j, i, and k such that aij = 1. Using these

new variables in (P′), we have

(P) zP =max
p,q,z

(

t,j

λt,jfjqt,j

s.t. pt,i,k =

+
,,-

,,.

1, if t= 1,

pt−1,i,k

−
!

m∈ai

λt−1,m(zt−1,i,m,k − zt−1,i,m,k+1), if t > 1,
∀t, i, j, k : ai,j = 1, (22)

qt,j = zt,i,j,1, ∀t, i, j : ai,j = 1, (23)

zt,i,j,k+1 ≤ zt,i,j,k, ∀t, i, j, k : ai,j = 1, (24)

zt,i,j,k ≤ pt,i,k, ∀t, i, j, k : ai,j = 1. (25)

Constraint (22) is derived directly from the second constraint of (P′). As a notational convention,

we take zt,i,j,ci+1 = 0 for all t, j, i. Constraints (23)–(25) are added to enforce the definition of

variables q, p, and z.

Theorem 2 below shows that the formulations (P) and (P′) are equivalent. To establish this

result, we use a different and more direct argument compared to the one in Vossen and Zhang

(2015b), which relies on the structure of the ALP’s column generation subproblems.

Theorem 2. The formulations (P) and (P′) are equivalent in the sense that they have the same

objective value.

We show that the product-based SPL approximation provides the same bound as the resource-

based SPL approximation in the following proposition. Proposition 1 establishes (P) as a reformu-

lation of (R).

Proposition 1. We have zP = zR ≥ v1(c), where v1(c) is the optimal value of the dynamic

programming model (1).
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3.3. Dual Valid Inequalities for (P)

The dual solution W ∗ of constraint (22) can be used to construct the product-based bid-price

policy. For Example 1, we have shown that the product-based bid-price policy is optimal given an

optimal dual solution. However, when the optimal dual solution is not unique, not all optimal dual

solutions can achieve this desired result.

To illustrate the issue with multiple optimal solutions, we consider Example 1 again. A dual

optimal solution of (P) is W ∗
1,1,1,1 = 215, W ∗

1,2,2,1 = 255, W ∗
2,1,1,1 = 200, W ∗

2,2,2,1 = 200 and 0’s for the

other variables. Then, the approximate value functions are as follows: vP2 (1,1) = 400, vP2 (1,0) = 200,

vP2 (0,1) = 200, and vP2 (0,0) = 0. The policy is u1,1 = 1, given f1 > vP2 (1,1)−vP2 (0,1) = 200, u1,2 = 1,

given f2 > vP2 (1,1)− vP2 (1,0) = 200, u1,3 = 1, given f3 > vP2 (1,1)− vP2 (0,0) = 400 and u2,3 = 1. The

corresponding expected revenue is $350, which is suboptimal. The issue here is that this dual

optimal solution does not correctly reflect the expected revenue contribution from each product.

In period 2, the expected revenue from product 1 is 0, while W ∗
2,1,1,1 = 200. Similarly, the expected

revenue from product 2 is 0, while W ∗
2,2,2,1 = 200. Ideally, we should have W ∗

2,1,1,1 =W ∗
2,2,2,1 = 0 in

a dual optimal solution of (P).

The two aforementioned dual optimal solutions of (P) for Example 1 actually correspond to

the same dual optimal solution of (R) as V ∗
1,1,1 = 215, V ∗

1,2,1 = 255, V ∗
2,1,1 = 200, and V ∗

2,2,1 = 200.

Because of (13), each dual optimal solution of (P) corresponds to one dual optimal solution of

(R). Therefore, the product-based approximation can be viewed as a way to disaggregate a dual

optimal solution of (R). However, there could be multiple ways to do such a disaggregation. Some

of them cannot take advantage of the product-based bid-price policy because they cannot correctly

capture the expected revenue contribution from the products (e.g., the one in the last paragraph).

One way to address this issue is to add a set of valid inequalities to the dual of (P). These

valid inequalities help us select an optimal solution with the potential to produce a more effec-

tive product-based bid-price policy. Furthermore, although Theorem 1 offers the hope that our

approach leads to a stronger policy, it is not guaranteed. However, we may add valid inequalities

to impose additional structures and reduce distortions in the optimal solution. This is similar to

the inequalities for reducing distortions in Nadarajah et al. (2015) and Nadarajah and Secomandi

(2020).

Another benefit of adding these inequalities is that it speeds up the convergence of the LP solu-

tion. Adding dual-optimal inequalities to accelerate and stabilize LP solutions is a well-known tech-

nique in the mathematical programming literature; see, e.g., Ben Amor et al. (2006) and Gschwind

and Irnich (2016). In the literature on the LP-based ADP for NRM, Adelman (2007) and Vossen

and Zhang (2015a) also use valid inequalities to speed up the computation. Our numerical results
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in Section 4 show that adding these inequalities indeed improves the computational performance

and is critical for improving the policy performance.

Next, we derive a set of valid inequalities for the dual of (P). Let (W,β,γ, δ) be the dual variables

associated with constraints (22)–(25). The dual of (P) is given by

(D) min
W,β,γ,δ

(

j

(

i∈aj

ci(

k=1

W1,i,j,k

s.t.
(

j∈ai

Wt,i,j,k −
(

j∈ai

Wt+1,i,j,k =
(

j∈ai

δt,i,j,k, ∀t, i, k, (26)

(

i∈aj

βt,i,j = λt,jfj, ∀t, j, (27)

δt,i,j,k − γt,i,j,k +λt,j

(

m∈ai

Wt+1,i,m,k

=

+
-

.
βt,i,j, if k= 1,

λt,j

!
m∈ai

Wt+1,i,m,k−1 − γt,i,j,k−1, if k≥ 2, ∀t, i, j, k : ai,j = 1, (28)

γt,i,j,k, δt,i,j,k ≥ 0, ∀t, i, j, k : ai,j = 1. (29)

We first establish some properties of the optimal solution. These properties generalize the mono-

tonicity result in Adelman (2007) and Vossen and Zhang (2015b), allowing us to establish a set of

valid inequalities.

Lemma 1. There exists an optimal solution (W ∗,β∗,γ∗, δ∗) to (D) where

W ∗
t,i,j,k ≥W ∗

t+1,i,j,k ≥ 0, ∀t, i, j, k : ai,j = 1, (30)

δ∗t,i,j,k =W ∗
t,i,j,k −W ∗

t+1,i,j,k, ∀t, i, j, k : ai,j = 1, (31)
(

j∈ai

W ∗
t,i,j,k ≥

(

j∈ai

W ∗
t,i,j,k+1, ∀t, i, k. (32)

We can interpret the structural properties in Lemma 1 as follows. Inequality (30) means that the

expected revenue from product j to the value of the k-th unit of resource i is non-increasing over

time. Furthermore, the difference in the value between two consecutive periods can be captured by

the corresponding δ variable, as stated in (31). Lastly, for each resource i and period t, (32) states

that the value of the k-th unit is not smaller than that of the (k+1)-th unit. Thus, the value of

an additional unit of a resource is non-increasing in a given period.

Building on Lemma 1, Proposition 2 below provides a set of valid inequalities, which are referred

to as product-value inequalities. Recall thatWt,i,j,k represents the revenue contribution from product

j to the value of the k-th unit of resource i in period t. Then, for a given state x (the current

resource level),
!

i∈aj

!xi
k=1Wt,i,j,k can be interpreted as the total expected revenue of product

j from period t onward. Intuitively, we have
!

i∈aj

!xi
k=1WT,i,j,k ≤ λT,jfj in the last period. The

expected revenue of product j in period t < T is no more than λt,jfj. Thus,
!

i∈aj

!xi
k=1Wt,i,j,k is

not greater than
!

i∈aj

!xi
k=1Wt+1,i,j,k +λt,jfj. Proposition 2 formalizes these results.
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Proposition 2. There exists an optimal solution to (D) that satisfies

(

i∈aj

xi(

k=1

Wt,i,j,k −
(

i∈aj

xi(

k=1

Wt+1,i,j,k ≤ λt,jfj, ∀t, j,x∈Xt. (33)

The valid inequalities (33) hold for all t, j,x∈Xt. Enumerating these inequalities can be difficult

even for very small problems because the set of state x can be very large. However, we show that

by taking x= c in (33), we arrive at a set of dominating inequalities:

(

i∈aj

ci(

k=1

Wt,i,j,k −
(

i∈aj

ci(

k=1

Wt+1,i,j,k ≤ λt,jfj, ∀t, j. (34)

To see this, note that W is monotone in t according to (30). Hence

(

i∈aj

xi(

k=1

Wt,i,j,k −
(

i∈aj

xi(

k=1

Wt+1,i,j,k =
(

i∈aj

xi(

k=1

(Wt,i,j,k −Wt+1,i,j,k)

≤
(

i∈aj

ci(

k=1

(Wt,i,j,k −Wt+1,i,j,k) =
(

i∈aj

ci(

k=1

Wt,i,j,k −
(

i∈aj

ci(

k=1

Wt+1,i,j,k ≤ λt,jfj, ∀t, j,x∈Xt.

This result is formally stated in the following proposition.

Proposition 3. Inequalities (34) dominate inequalities (33).

Given Proposition 3, we can focus on inequalities (34) instead of inequalities (33). Importantly,

inequalities (34) are indexed by time and product and are much more compact than inequali-

ties (33), which grow exponentially in the number of resources.

Adding (34) to (D) gives us the following formulation:

(Dc) min
W,β,γ,δ

(

i

(

j∈ai

ci(

k=1

W1,i,j,k

s.t. (26)− (29),
(

i∈aj

ci(

k=1

Wt,i,j,k −
(

i∈aj

ci(

k=1

Wt+1,i,j,k ≤ λt,jfj, ∀t, j.

Our computational studies in Section 4 confirm that enforcing (34) can improve both the com-

putational and policy performance.

4. Computational Results

This section reports the results of our computational study, which has two objectives: i) to exam-

ine the performance of the product-based bid-price policies and ii) to evaluate the computational

performance of the reformulations and the impact of the product-value inequalities. The compu-

tational study is performed on a MacBook Pro with the M1 Max CPU, 64 GB RAM, and macOS

operating system. The computer code is implemented in Julia (Bezanson et al. 2017) with JuMP

(Dunning et al. 2017). The solver is Gurobi 9.5.1 (Gurobi Optimization 2022).
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Figure 1: (a) A Hotel Instance with Three Nights. (b) A Hub-and-Spoke Instance with 3 Spokes

4.1. Test Instances

We consider two sets of NRM instances with different network structures: hotel instances and hub-

and-spoke instances. In the hotel instances, each resource corresponds to a room-night (see, e.g.,

Gallego and van Ryzin 1997). There are I resources in each instance. The products are requests

to stay in a room for several consecutive nights. Starting at night i= 1,2, · · · , I, a customer can

request to stay for i′ = 1,2, · · · , I− i+1 consecutive nights. Thus, there are I(I+1)

2
types of stay-over

requests. Figure 1(a) shows an example of a hotel-network instance with three nights. The solid

arrows represent the resources and one-night-stay requests. The dashed arrows represent multiple-

night-stay requests. There are two classes for each itinerary, where the revenue of a high-class is κ

times that of its corresponding low-class. The revenue for the low-class for each night i, fi, is drawn

from a discrete uniform distribution between 1 and 100. The total revenue generated by a low-class

request starting at night i and staying for i′ nights is
!i+i′−1

i=i fi. The arrival probabilities λt,j for

all t ∈ T and j ∈ J are generated using the method described in Section 5.1 of Ma et al. (2020).

This method captures the phenomenon that high-class requests tend to arrive later in the selling

horizon. The total expected demand for the capacity on night i is
!

t

!
j ai,jλt,j. Let α denote the

load factor in the system. We set the initial capacity of night i as ci =
9!

t
!

j ai,jλt,j

α

:
. We consider

hotel instances with a different selling horizon T , number of resources I, price ratio κ, and load

factor α. By taking T ∈ {50,100,200,400}, I ∈ {2,3,4,5}, κ ∈ {4,8}, and α ∈ {1.6,2.2,3.0}, we
generate 96 hotel instances.

The hub-and-spoke instances are generated similarly, except that the underlying networks are

different. Hub-and-spoke networks are based on the ones in Topaloglu (2009) and have been used

in computational experiments in several other papers (Vossen and Zhang 2015a,b, Kunnumkal and

Talluri 2016, Brown and Smith 2014). The resources correspond to flight legs, and the products

correspond to itineraries with different prices. In each instance, there are N spokes and one hub.

One flight leg goes from the hub to each non-hub location, and another flight leg exists in the

opposite direction. Therefore, there are 2N legs in total (I = 2N). We have 2N itineraries between

the non-hub locations and the hub, and there are N(N − 1) itineraries between the non-hub

locations. Thus, there are N 2+N itineraries in total. Figure 1(b) shows an example of a hub-and-

spoke instance with three spokes. The solid arrows represent the resources and one-leg itineraries.

The dashed arrows represent the through itineraries from one non-hub location to another. For
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% Gain To RB To Upp. Bnd. To DEC Average Running Time (s)
Avg Maximum Avg % Gap Avg % BarTol=1e-6

T PB PBc PB PBc RB PBc PBc (R) (P) (Dc) DEC

Hotel

50 0.183 0.783 0.922 2.468 3.195 2.441 -0.996 1.2 0.8 0.7 0.4
100 0.175 0.707 0.552 3.362 2.523 1.839 -0.911 5.6 4.6 3.3 1.5
200 0.131 1.304 0.344 4.327 2.622 1.363 -0.787 32.7 29.3 21.6 6.4
400 0.048 1.643 0.177 5.270 2.534 0.952 -0.591 185.5 153.2 126.5 25.6
All 0.134 1.109 2.718 1.648 -0.821 56.3 47.0 38.0 8.5

Hub-Spoke

50 -0.112 0.285 1.179 1.051 3.220 2.942 1.571 0.5 0.4 0.5 0.9
100 -0.074 0.177 0.208 1.540 2.179 2.007 0.697 2.7 2.0 2.0 3.3
200 -0.018 0.325 0.343 1.401 1.799 1.480 0.060 13.3 11.0 9.7 13.8
400 -0.024 0.515 0.133 2.768 1.826 1.328 -0.408 64.2 55.8 51.7 55.8
All -0.057 0.326 2.256 1.939 0.480 20.2 17.3 16.0 18.5

Overall 0.039 0.717 2.487 1.794 -0.171 38.2 32.1 27.0 13.5

Table 2: Summary of the Policy Performance and Average Running Time with BarTol=1e-6 in Seconds

each itinerary, there are two classes. There are 96 hub-and-spoke instances corresponding to T ∈

{50,100,200,400}, N ∈ {2,3,4,5} (i.e., I ∈ {4,6,8,10}), κ∈ {4,8}, and α∈ {1.6,2.2,3.0}. The URL

http://dx.doi.org/10.17632/tn2dzcjmkr.1 provides these 192 instances.

4.2. Performance of the Product-Based Bid-Price Policy

We consider four policies. The first policy, denoted by RB, is the resource-based bid-price policy

based on (11). The next two are product-based bid-price policies based on (16). The second policy,

denoted by PB, is based on the dual solution of (P). To have a fair comparison and isolate the

effect of the product-based bid-prices, we use the same dual optimal solution of (P) to construct

RB and PB. RB is constructed based on (11) via (13). The third policy, denoted by PBc, is based

on the solution of (Dc). The last policy we have included as a benchmark is the policy obtained

from the dynamic programming decomposition (DEC) approach, which decomposes the problem

by resources. The details of DEC can be found in Zhang and Adelman (Section 4.2, 2009). DEC

is often considered the strongest heuristic in practice for the NRM problem, which is verified by

the extensive experimental results in Ma et al. (2020). We also implemented and tested another

version of DEC based on Liu and van Ryzin (Section 6.3.2, 2008). However, the performance of this

variant is dominated by the one based on Zhang and Adelman (Section 4.2, 2009). Thus, we choose

not to report its results. We estimate the expected revenue of each policy by simulating 100,000

sample paths for each instance. The detailed numerical results are relegated to Appendix EC.2.1

and Appendix EC.2.2 for the hotel and hub-and-spoke instances, respectively.

We provide an overview of the results in Table 2. The first column in the table specifies the

network structure. The number of periods, T , is shown in the second column. The third column

reports the average and maximum percent revenue gains of PB and PBc over RB. Taking PBc as

an example, the percent revenue gain is calculated as (PBc - RB)/RB. The fourth column shows

the average percent revenue gaps of RB and PBc from the upper bounds. The fifth column is
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Figure 2: Box-Plot of Revenue Gains for the Hotel Instances with Various Load Factors (α).

the average percent difference between PBc and DEC, which is calculated as (PBc - DEC)/DEC.

We observe that product-value inequalities are critical to product-based policies. Without them,

PB provides a small improvement on the hotel instances and performs worse on the hub-and-

spoke instances than RB. With them, PBc significantly outperforms RB on both the hotel and

hub-and-spoke instances. Hence, we focus on PBc hereafter.

We first examine the hotel instances. When T = 50, the average additional revenue gain of PBc

compared to RB is 0.783%. The maximum additional gain is more than 2.4%. As T increases,

the average additional gain of PBc becomes larger. When T = 400, the average revenue gain is

1.643%, the maximum one is 5.270%, and the average gap from the upper bounds is only 0.952%.

Across all hotel instances, the average additional gain of PBc is 1.109%, which is an improvement

of 0.975% over that of PB. Also, with 5% statistical significance (a p-value less than 0.05), PBc

achieves higher expected revenues than RB in 95 out of the 96 (about 99%) hotel instances based

on the one-tailed Welch’s t-test. Moreover, PBc is about 1.645% away from the upper bound on

average. When compared to DEC, the average revenues of PBc are about 0.821% less than that of

DEC for the hotel instances.

We examine different parameters and observe an interesting pattern related to the load factors.

To better understand the impact of the load factors on the performance of PBc, we create a

box-plot of revenue gains with respect to load factor α in Figure 2. When α = 2.2, PBc shows

the highest impact. The average gains are 0.671%, 2.054%, and 0.603% for α = 1.6, 2.2, and

3.0, respectively. We also tested instances with load factors other than these three values in our

preliminary experiments. However, PBc generates little gain there. This observation emphasizes

that when resources are abundant (α is small) or scarce (α is big), switching from resource-based

policies to product-based ones has little impact.

One surprising finding is that PBc generates higher gains when the selling horizon, T , increases.

To investigate this phenomenon, we create four plots in Figure 3 to investigate the behavior of RB,

PB, and PBc. Each plot corresponds to a different selling horizon. Each data point is between 0 and

1 and represents the proportion of accepted product requests by a policy in that period across all



19

Figure 3: Accepted Proportion of Product Requests for RB, PB, and PBc Over All Hotel Instances
with T Periods Based on 100,000 Samples.

instances in our simulation. RB, PB, and PBc are shown as blue dotted, red solid, and black dashed

lines, respectively. One immediate observation is that RB and PB are almost identical to each other.

They only differ in the periods closer to the end of the selling horizon. In contrast, PBc behaves

quite differently compared to RB. PBc rejects more requests in earlier periods and accepts more

requests in later periods. This tendency becomes more significant as the selling horizon increases.

This finding suggests that PBc tends to use more stringent bid-prices to protect the capacity for

high-class requests in the later periods of the selling horizon and demonstrates the critical role of

the product-value inequalities.

Regarding the hub-and-spoke instances, the observations are quite similar to those for the hotel

instances. However, product-value inequalities are even more crucial here because PB actually

performs worse than RB. With 5% statistical significance, PBc has higher expected revenues than

RB in 64 out of the 96 (about 67%) instances based on Welch’s t-test. Compared to RB, on

average, PBc improves the average revenues by 0.326% and reduces the gap from 2.256% to 1.939%.

Importantly, it is worth noting that PBc is stronger than DEC for most of the instances, especially

when the selling horizon is shorter, and has 0.480% higher average revenue overall.

Overall, our numerical results demonstrate several points. First, the product-based bid-price

policy can be better than the resource-based bid-price policy. PBc can improve average revenues

by 0.72% and has higher revenue than RB for 159 out of 192 instances at a 5% significance level.

Second, product-value inequalities are extremely critical as they enable PBc to behave in a more

intelligent way for obtaining most of the gain. PBc has higher revenue than PB for 166 out of 192

instances at a 5% significance level. Third, PBc is competitive to DEC, which is often considered

the strongest heuristic for the NRM problem in practice.
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Figure 4: Summary of Computational Performance with BarTol=1e-6 and BarTol=1e-7.

4.3. Computational Performance

This section presents the computational performance of the three formulations: (R), (P), and

(Dc). Recall that Gurobi is the underlying LP solver. We choose the barrier method and disable

crossover by setting Gurobi’s parameters: Method=2 and Crossover=0. In addition, we solve the

test instances with two barrier convergence tolerances by changing Gurobi’s parameter BarTol.

We keep the default settings of Gurobi otherwise. Tables EC.13 and EC.14 in Appendix EC.3.1

report the times (in seconds) for Gurobi to terminate for the hotel instances with BarTol=1e-6.

Table 2 shows the average running times of the three formulations and DEC in its last column.

We plot the average solution times and the number of non-optimal instances in Figure 4. On

the left, the barrier convergence tolerance is 1e-6. On the right, the barrier convergence tolerance

is 1e-7. We can see that (P) and (Dc) have a significant advantage over (R). First, (P) and (Dc)

have better computational efficiency than (R). When BarTol=1e-6, the average computation time

of (R) is 38.2 seconds, while that of (P) and (Dc) are 32.1 and 27.0 seconds, respectively. Thus, on

average, (P) and (Dc) are 1.19 and 1.42 times faster than (R), respectively.

Second, (P) and (Dc) have better numerical stability. When BarTol=1e-6, both (P) and (Dc)

can terminate with “Optimal” status for all 192 instances. However, (R) does not terminate with

“Optimal” status for three out of the 192 instances and instead terminates with “Suboptimal”

status. This is troublesome because Gurobi does not provide a dual solution needed to construct

the policy when it terminates with “Suboptimal” status. Therefore, (P) and (Dc) have better

numerical performance than (R), even though they are larger formulations than (R). With modern

optimization tools, it is not rare for a larger formulation to outperform a smaller one; many

examples are documented in Bertsimas and Dunn (2019). Among (P) and (Dc), (Dc) appears to

have better computational performance because it has a shorter running time and terminates with

“Optimal” status for all 192 instances.

We further test (P) and (Dc) with a tighter barrier convergence tolerance: BarTol=1e-7. The

detailed results are included in Tables EC.15 and EC.16 in Appendix EC.3.2. Under this barrier

convergence tolerance, the average times of (P) and (Dc) are 39.9 and 51.5 seconds, respectively, as
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shown in Figure 4. Even though (P) has shorter running times than (Dc) on average, (P) terminates

with “Suboptimal” status for 25 instances, while (Dc) does so for only five instances. Thus, (Dc)

is able to solve 20 more instances to optimality than (P) with a tighter convergence tolerance.

This again demonstrates the effectiveness of the product-value inequalities on providing robust

computational performance.

The detailed running times of DEC are in Table EC.17. Overall, the average running time of

DEC is 13.5 seconds in our implementation. Although DEC has longer solution times than (Dc)

for the hub-and-spoke instances, as shown in Table 2, DEC can be further sped up in several ways.

Among them, parallelization might be the most significant one because DEC can be parallelized by

resources. However, DEC obtains much looser upper bounds on the expected revenue. To evaluate

the policy performance, one still needs to solve the resource-based or product-based SPL approxi-

mation. The advantage of the product-based SPL approximation is that it provides more granular

information and allows for better interpretability.

5. Conclusion

In this paper, we propose a product-based ALP approach for the NRM problem. We start with

a new policy referred to as the product-based bid-price policy, which takes the network effect

into account and alleviates the non-optimality of resource-based bid-price policies (Talluri and van

Ryzin 1998). To facilitate the product-based bid-price policy, we propose a product-based SPL

approximation to capture more granular information than the resource-based SPL approximation.

We show that the resulting ALP problem admits a compact equivalent reformulation, which we

call the reduced program. We also derive valid inequalities, which can further improve the policy

and computational performance.

We conduct numerical experiments on 192 problem instances considering different network struc-

tures, selling horizons, and load factors. The product-based bid-price policy significantly outper-

forms the resource-based one, with an average revenue gain of 0.72% and a maximum gain of 5.3%.

The product-based SPL approximation can be solved 1.42 times faster than the resource-based

SPL approximation. It also has better numerical stability and obtains optimal solutions for 20

more instances. Adding the valid inequalities is critical for improving the expected revenue and

enhancing the computational performance. Our best implementation of the product-based bid-

price policy shows stronger performance than the dynamic programming decomposition heuristic

for the hub-and-spoke instances.

There are several avenues for future research. First, we assume independent demand throughout

the paper. It is natural to incorporate customer choice models (Vulcano et al. 2010, Berbeglia et al.

2021). While the product-based SPL approximation can be applied, it is unclear whether a compact
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reformulation exists and whether the resulting ALP can be efficiently solved. Establishing valid

inequalities and their impact is another potential challenge. We might even push this direction

further to consider the setting in which the demand parameters are unknown (see Topaloglu and

Powell 2006, Besbes and Zeevi 2012). Second, unlike the existing ALP approaches that are moti-

vated by developing stronger functional approximations and tighter bounds, our research starts

by constructing good policies, and then the approximation architecture is chosen to match the

proposed policies. It would be interesting to explore this idea for other application settings. Lastly,

we use valid inequalities to guide the selection of optimal solutions to improve both the policy and

computational performance. This opens opportunities to further investigate creative applications

of classic mathematical programming theory to LP-based ADPs.
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EC.1. Technical Proofs
EC.1.1. Proof of Theorem 1

Plugging (17) into the formulation (LP) and simplifying the constraints, we obtain
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Given an optimal solution (θ∗,W ∗) to (DW ), we can approximate the value functions as:

vt(x)≈ vWt (x) = θ∗t +
(

j

1
)
x≥ aj

*(

i∈aj

xi(

k=1

W ∗
t,i,j,k, ∀t,x∈Xt. (EC.2)

Recall that the resource-based SPL value function approximation is denoted by vRt (x). In what

follows, we show that, like vRt (x), v
W
t (x) provides state-wise upper bounds of vt(x). Moreover, vWt (x)

provides state-wise lower bounds of vRt (x). Therefore, v
W
t (x) has state-wise smaller approximation

errors than vRt (x).

First, we show that vWt (x) is an upper bound of vt(x) for all t and x∈Xt.

Proposition EC.1. vWt (x)≥ vt(x) for all t, x∈Xt.

Proof: We prove the result by induction. Consider (D′) and t= T , we note from (EC.1) that
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Thus, the result holds for t= T . Next, assume the result holds for t+1. Consider (DW ) and the

inductive assumption for all x∈Xt+1, we have
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The last equality follows the optimality equation for t. □
Now, we construct a state-wise upper bound of vt(x) and show that this upper bound is equal to

vRt (x) later. Given an optimal solution (W ∗,β∗,γ∗, δ∗) to (D) and Theorem 2, W ∗ is also optimal

to (D′), with θt = 0 for all t. Following the product-based SPL approximation, we can approximate

the value function as:

vt(x)≈
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In this way, we also obtain an upper bound of vt(x) for all t and x∈XT .
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Thus, the result holds for t= T . Next, assume the result holds for t+1. Consider (D′) and the
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The last equality follows the optimality equation for t. □
Next, we show that
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t,i,j,k ≥ vWt (x) for all t and x ∈ Xt. This result helps us

compare the approximation error between these two approximations, vWt (x) and vRt (x).
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The right-hand side of (EC.3) is larger than that of (EC.4). Thus, it follows that
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The first inequality holds because both (D′) and (DW ) are minimization problems. □
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Now, we show that
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Given an optimal solution V ∗
t,i,k to (RD), setting W̃t,i,j,k = V ∗

t,i,k/|aj| for all t, i, j, k gives an optimal

solution to (D) because all constraints in (D) are satisfied, and the objective value of (D) with W̃t,i,j,k

is the same as the optimal objective value of (RD) with V ∗
t,i,k. Thus,
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∗
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for all t, x∈Xt.

We have shown that both vWt (x) and
!

j

!
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∗
t,i,j,k are the upper bound of vt(x)

for all t and x ∈ XT in Propositions EC.1 and EC.2. Furthermore, we know that vWt (x) ≤
!
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∗
t,i,j,k for all t, x ∈ Xt by Proposition EC.3. Finally, we know how to relate
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!xi
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∗
t,i,j,k and vRt (x) such that they are equal to each other. Putting it together, we

have the desired result in Theorem 1. □

EC.1.2. Proof of Theorem 2

Because (P) is derived from (P′) via variable aggregation, every feasible solution of (P′) corresponds

to a feasible solution to (P) with the same objective value.

To establish equivalence, we must show that each feasible solution to (P), denoted by (q∗,p∗,z∗),

corresponds to a feasible solution to (P′), denoted by h∗. Denote period t values of (q∗,p∗,z∗)

as (q∗
t ,p

∗
t ,z

∗
t ). Define Pt = {qt,j = zt,i,j,1 ∀i, j : ai,j = 1, zt,i,j,k+1 ≤ zt,i,j,k ∀i, j, k : ai,j = 1, zt,i,j,k ≤

pt,i,k ∀i, j, k : ai,j = 1,0≤ qt,pt,zt ≤ 1} for a given t. Pt is an integral polytope because the matrix

is a totally unimodular one. Each row of this matrix has at most one +1, and at most one -1. As a

result, the constraint matrix is totally unimodular from Propositions 2.1 and 2.6 in Nemhauser and

Wolsey (1988, p.540 and p. 542). Therefore, all extreme points of Pt are integral. Thus, (q
∗
t ,p

∗
t ,z

∗
t )

is a convex combination of the extreme points of Pt. Denote an extreme point of Pt as (q
e
t ,p

e
t ,z

e
t)



e-companion to Zhang, Samiedaluie and Zhang: Product-Based ALP for NRM ec5

indexed by e, its weight in a convex combination as he
t and the set of extreme points of Pt as Et.

Then, (q∗
t ,p

∗
t ,z

∗
t ) can be represented as

q∗t,j =
(

e∈Et

qet,jh
e
t , ∀t, j,

p∗t,i,k =
(

e∈Et

pet,i,kh
e
t , ∀t, i, k,

z∗t,j,i,k =
(

e∈Et

pet,i,kq
e
t,jh

e
t , ∀t, j, i, k : aij = 1,

(

e∈Et

he
t = 1,

he
t ≥ 0, ∀e∈Et.

Based on the definition of Pt, (q
e
t ,p

e
t ,z

e
t) corresponds to a point in the state-action space, and

Et is equivalent to the state-action space. Furthermore, we can obtain the value of ut,j by the value

of qet,j for each j in J and the value of xt,i by the value of pet,i,k for each i in I from an extreme

point e. Then, we can set h∗
t,x,u = he

t for all corresponding state-action pairs and extreme points e

in Et and repeat the argument for all t in T . Thus, each feasible solution to (P) has a corresponding

solution to (P′). This completes the proof. □

EC.1.3. Proof of Proposition 1

The inequality zR ≥ v1(c) is well-known in the literature. We only need to show the equality. It

can be verified that constraints (23), (24), and (25) of (P) are identical to constraints (7), (8), and

(9) of (R). Furthermore, constraint (22) adds |ai| copies of constraint (6) for each resource i. As a

result, zP = zR. □

EC.1.4. Proof of Lemma 1

We first show that an optimal solution that does not satisfy (30) can be modified to satisfy the

condition. Then, we further modify the solution to satisfy (31). Finally, we invoke a known result

in Vossen and Zhang (2015b) to establish (32).

Step 1: Suppose we are given an optimal solution (W̃ , β̃, γ̃, δ̃) that does not satisfy (30). We can

construct a new optimal solution (W ∗, β̃, γ̃, δ̃) that satisfies (30) as follows.

Let t
′
be the largest time index for which (30) is violated for some i

′
, j

′
, and k

′
. We define two

product sets:

a+

t
′
,i
′
,k

′ =
;
j ∈ ai : W̃t

′
,i
′
,j,k

′ − W̃t
′
+1,i

′
,j,k

′ > 0
<
,

a−
t
′
,i
′
,k

′ =
;
j ∈ ai : W̃t

′
,i
′
,j,k

′ − W̃t
′
+1,i

′
,j,k

′ < 0
<
.

We construct W ∗ such that
!

j∈ai
W ∗

t
′
,i
′
,j,k

′ =
!

j∈ai
W̃t

′
,i
′
,j,k

′ as follows:
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• For each j in a−
t
′
,i
′
,k

′ , set W ∗
t
′
,i
′
,j,k

′ = W̃t
′
+1,i

′
,j,k

′ . Let ε=−
!

j∈a−
t
′
,i
′
,k

′

%
W̃t

′
,i
′
,j,k

′ − W̃t
′
+1,i

′
,j,k

′

&
.

• For each j in a+

t
′
,i
′
,k

′ , set W ∗
t
′
,i
′
,j,k

′ = W̃t
′
,i
′
,j,k

′ + min{ε, W̃t
′
,i
′
,j,k

′ − W̃t
′
+1,i

′
,j,k

′} and update

ε= ε− (W ∗
t
′
,i
′
,j,k

′ − W̃t
′
,i
′
,j,k

′ ).

From (26) and (29), we must have

(

j∈ai

(Wt,i,j,k −Wt+1,i,j,k)≥ 0, ∀t, i, k.

Therefore,

(

j∈a+

t
′
,i
′
,k

′

%
W̃t

′
,i
′
,j,k

′ − W̃t
′
+1,i

′
,j,k

′

&
>

(

j∈a−
t
′
,i
′
,k

′

%
W̃t

′
,i
′
,j,k

′ − W̃t
′
+1,i

′
,j,k

′

&
.

Hence, we are able to allocate the deficit over the products in a−
t
′
,i
′
,k

′ to those in a+

t
′
,i
′
,k

′ . By

construction,
!

j∈ai
W ∗

t
′
,i
′
,j,k

′ =
!

j∈ai
W̃t

′
,i
′
,j,k

′ , which ensures that (28) is maintained. Successively

constructing the values backwards in time yields a feasible solution (W ∗, β̃, γ̃, δ̃) that has the same

objective value as that of (W̃ , β̃, γ̃, δ̃).

Step 2: Given that (30) holds, we further modify the solution (W ∗, β̃, γ̃, δ̃) to obtain another

solution (W ∗,β∗,γ∗, δ∗) with the same objective value as follows.

First, we set β∗ = β̃ and

δ∗t,i,j,k =W ∗
t,i,j,k −W ∗

t+1,i,j,k, ∀t, i, j, k : ai,j = 1.

Then, for each t, i, j, k with ai,j = 1, take

γ∗
t,i,j,k =

+
,,-

,,.

δ∗t,i,j,k +λt,j

!
m∈ai

W ∗
t+1,i,m,k −β∗

t,i,j, if k= 1,

δ∗t,i,j,k +λt,j

!
m∈ai

W ∗
t+1,i,m,k

−λt,j

!
m∈ai

W ∗
t+1,i,m,k−1 + γ∗

t,i,j,k−1, if k≥ 2,

=
k(

k
′
=1

δ∗
t,i,j,k

′ +λt,j

(

m∈ai

W ∗
t+1,i,m,k −β∗

t,i,j,

=
k(

k
′
=1

(W ∗
t,i,j,k

′ −W ∗
t+1,i,j,k

′ )+λt,j

(

m∈ai

W ∗
t+1,i,m,k −β∗

t,i,j. (EC.9)

The second equality is obtained by recursively substituting out γ∗
t,i,j,k−1 for k≥ 2. The third equality

follows from substituting out δ∗
t,i,j,k

′ . Next, we modify the value of β∗ in the following way to ensure

the non-negativity of γ∗. For each t and j,

• Let ρt,j = λt,jfj.

• For each i in aj, let

σt,i,j = min
k∈{1,··· ,ci}

+
-

.

k(

k
′
=1

(W ∗
t,i,j,k

′ −W ∗
t+1,i,j,k

′ )+λt,j

(

m∈ai

W ∗
t+1,i,m,k

6
7

8 ,

set β∗
t,i,j =min{ρt,j,σt,i,j} and update ρt,j = ρt,j −β∗

t,i,j.
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We still must show that β∗ satisfies constraint (27). To achieve this, we show that
!

i∈aj σt,i,j is

greater than or equal to λt,jfj for the given t and j. Furthermore, we know that σt,i,j ≥ 0 because

W ∗
t,i,j,k ≥ W ∗

t+1,i,j,k ≥ 0. Therefore, we can allocate the value of λt,jfj to β∗
t,i,j over i ∈ aj by the

constructed solution. Note that β∗
t,i,j ≥ 0 by construction.

Given t and j, let

x∗
t,i,j = argmin

k∈{1,··· ,ci}

+
-

.

k(

k
′
=1

(W ∗
t,i,j,k

′ −W ∗
t+1,i,j,k

′ )+λt,j

(

m∈ai

W ∗
t+1,i,m,k

6
7

8

for each i∈ aj. Based on Theorem 2 and the strong duality of linear programming, (D) is equivalent

to (D
′
). This implies that W ∗ is an optimal solution to (D

′
) with θt = 0 for all t. Thus, for a state-

action pair (x,ut) with xi = x∗
t,i,j, ut,j = 1 for each i in aj, and ut,j = 0 for other entries. Hence, we

have

(

i∈aj

+
-

.

x∗t,i,j(

k=1

(W ∗
t,i,j,k −W ∗

t+1,i,j,k)+λt,j

(

m∈ai

W ∗
t+1,i,m,x∗i

6
7

8≥ λt,jfj,

where the inequality follows from constraint (19) for the given state-action pair (x,ut). Therefore,

we can ensure that constraint (27) is satisfied by the constructed solution.

The solution (W ∗,β∗,γ∗, δ∗) has the same objective value as that of (W̃ , β̃, γ̃, δ̃). Thus, it is

optimal and satisfies (30) and (31).

Step 3: Lemma 5 in Vossen and Zhang (2015b) shows that the resource-based SPL approximation

has an optimal solution that satisfies Vt,i,k ≥ Vt,i,k+1 for all t, i, k. Given (13), Vt,i,k =
!

j∈ai
Wt,i,j,k

for all t, i, k, we have
!

j∈ai
W ∗

t,i,j,k ≥
!

j∈ai
W ∗

t,i,j,k+1 for all t, i, k. □

EC.1.5. Proof of Proposition 2

Without loss of optimality, we focus on solutions that satisfy the conditions in Lemma 1. Since W

is monotone in t according to (30), we have

Wt,i,j,k −Wt+1,i,j,k ≥ 0, ∀t, i, j, k.

Therefore, if (33) holds for x= c, then it holds for all x. In the remainder of the proof, we focus

on x= c.

From Lemma 1, we can replace (26) by

Wt,i,j,k −Wt+1,i,j,k = δt,i,j,k, ∀t, i, j, k.

Substituting out δ, (28) can be rewritten as

Wt,i,j,k −Wt+1,i,j,k − γt,i,j,k +λt,j

(

m∈ai

Wt+1,i,m,k

=

+
-

.
βt,i,j, if k= 1,

λt,j

!
m∈ai

Wt+1,i,m,k−1 − γt,i,j,k−1, if k≥ 2, ∀t, i, j, k : ai,j = 1.
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Suppose (33) does not hold for a given optimal solution (W̃ , β̃, γ̃, δ̃). Let t
′
be the largest time

index for which there is a product j
′
violating (33); i.e.,

(

i∈aj
′

ci(

k=1

W̃t
′
,i,j

′
,k −

(

i∈aj
′

ci(

k=1

W̃t
′
+1,i,j

′
,k > λt

′
,j

′fj′ .

We construct an optimal solution (W ∗,β∗,γ∗, δ∗) that satisfies (33) as follows:

• Initialize (W ∗,β∗,γ∗, δ∗) = (W̃ , β̃, γ̃, δ̃).

• For each i in aj
′
, substituting out γ∗

t
′
,i,j

′
,k−1

recursively for k = 1 to ci and using
!k−1

k
′
=1

W ∗
t
′
,i,j

′
,k

′ −
!k−1

k
′
=1

W̃t
′
+1,i,j

′
,k

′ ≥ 0 yields (EC.9). Based on it, we set

W ∗
t
′
,i,j

′
,k
=max

"
0, β̃t

′
,i,j

′ −λt
′
,j

′
(

m∈ai

W̃t
′
+1,i,m,k

1
−

k−1(

k
′
=1

(W ∗
t
′
,i,j

′
,k

′ − W̃t
′
+1,i,j

′
,k

′ )+ W̃t
′
+1,i,j

′
,k,

(EC.10)

δ∗
t
′
,i,j

′
,k
=

+
-

.
0, if β̃t

′
,i,j

′ −λt
′
,j

′
!

m∈ai
W̃t

′
+1,i,m,k ≤ 0,

β̃t
′
,i,j

′ −λt
′
,j

′
!

m∈ai
W̃t

′
+1,i,m,k −

!k−1

k
′
=1
(W ∗

t
′
,i,j

′
,k

′ − W̃t
′
+1,i,j

′
,k

′ ), otherwise,

=

+
-

.

0, if β̃t
′
,i,j

′ −λt
′
,j

′
!

m∈ai
W̃t

′
+1,i,m,k ≤ 0,

β̃t
′
,i,j

′ −λt
′
,j

′
!

m∈ai
W̃t

′
+1,i,m,k −max

;
0, β̃t

′
,i,j

′ −λt
′
,j

′
!

m∈ai
W̃t

′
+1,i,m,k−1

<
, otherwise,

γ∗
t
′
,i,j

′
,k
= (W ∗

t
′
,i,j

′
,k
− W̃t

′
+1,i,j

′
,k)− (β̃t

′
,i,j

′ −λt
′
,j

′
(

m∈ai

W̃t
′
+1,i,m,k)+

k−1(

k
′
=1

(W ∗
t
′
,i,j

′
,k

′ − W̃t
′
+1,i,j

′
,k

′ )

=

"
−(β̃t

′
,i,j

′ −λt
′
,j

′
!

m∈ai
W̃t

′
+1,i,m,k), if β̃t

′
,i,j

′ −λt
′
,j

′
!

m∈ai
W̃t

′
+1,i,m,k ≤ 0,

0, otherwise.

To verify the nonnegativity of δ∗ and γ∗, we rely on the property stated in (32),

i.e.,
!

j∈ai
W̃t

′
+1,i,j

′
,k ≥

!
j∈ai

W̃t
′
+1,i,j

′
,k+1 for all i, k. Given a k, we have β̃t

′
,i,j

′ −

λt
′
,j

′
!

m∈ai
W̃t

′
+1,i,m,k ≥ β̃t

′
,i,j

′ − λt
′
,j

′
!

m∈ai
W̃t

′
+1,i,m,k

′ for all k
′ ≤ k. Thus, if β̃t

′
,i,j

′ −

λt
′
,j

′
!

m∈ai
W̃t

′
+1,i,m,k ≥ 0, δ∗

t
′
,i,j

′
,k

is nonnegative due to
!k−1

k
′
=1
(W̃t

′
,i,j

′
,k

′ − W̃t
′
+1,i,j

′
,k

′ ) =

max
;
0, β̃t

′
,i,j

′ −λt
′
,j

′
!

m∈ai
W̃t

′
+1,i,m,k−1

<
and max

;
0, β̃t

′
,i,j

′ −λt
′
,j

′
!

m∈ai
W̃t

′
+1,i,m,k

<
≥

max
;
0, β̃t

′
,i,j

′ −λt
′
,j

′
!

m∈ai
W̃t

′
+1,i,m,k−1

<
. If β̃t

′
,i,j

′ − λt
′
,j

′
!

m∈ai
W̃t

′
+1,i,m,k ≤ 0, γ∗

t
′
,i,j

′
,k

is

nonnegative because β̃t
′
,i,j

′ −λt
′
,j

′
!

m∈ai
W̃t

′
+1,i,m,k

′ ≤ 0 and W ∗
t
′
,i,j

′
,k

′ = W̃t
′
+1,i,j

′
,k

′ for all k
′ ≤ k.

By construction, (30) and (31) are satisfied between W ∗
t
′
,i,j

′
,k

and W ∗
t
′
+1,i,j

′
,k

for all i and k.

Furthermore, using the same way to set W ∗ at t
′ − 1 for all i and k, we have the following due to

W ∗
t
′−1,i,j

′
,k
−W ∗

t
′
,i,j

′
,k
≥ 0 for all i and k:

k+1(

k
′
=1

(W ∗
t
′−1,i,j

′
,k
−W ∗

t
′
,i,j

′
,k
)−

k(

k
′
=1

(W ∗
t
′−1,i,j

′
,k
−W ∗

t
′
,i,j

′
,k
)≥ 0.
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Following (EC.10), we have

max

"
0, β̃t

′−1,i,j
′ −λt

′−1,j
′
(

m∈ai

W ∗
t
′
,i,m,k+1

1
−max

"
0, β̃t

′−1,i,j
′ −λt

′−1,j
′
(

m∈ai

W ∗
t
′
,i,m,k

1
≥ 0.

This leads to

(

m∈ai

W ∗
t
′
,i,m,k

−
(

m∈ai

W ∗
t
′
,i,m,k+1

≥ 0

Notice that W ∗
t
′
,i,j

′
,k
are not affected by W ∗

t
′−1,i,j

′
,k
. Thus, (32) is satisfied by W ∗ at t

′
.

Furthermore,
!k

k
′
=1W

∗
t
′
,i,j

′
,k

′ ≤
!k

k
′
=1 W̃t

′
,i,j

′
,k

′ for all i in aj
′
and k. Recall that W̃ satisfies

Lemma 1, which means for all i in aj
′
and k, following (EC.9) and the nonnegativity of γ yields

k(

k
′
=1

(W̃t
′
,i,j

′
,k

′ − W̃t
′
+1,i,j

′
,k

′ )+λt
′
,j

′
(

m∈ai

W̃t
′
+1,i,m,k − β̃t

′
,i,j

′ ≥ 0.

Combining with
!k

k
′
=1(W̃t

′
,i,j

′
,k

′ − W̃t
′
+1,i,j

′
,k

′ )≥ 0 gives

k(

k
′
=1

(W̃t
′
,i,j

′
,k

′ − W̃t
′
+1,i,j

′
,k

′ )≥max

"
0, β̃t

′
,i,j

′ −λt
′
,j

′
(

m∈ai

W̃t
′
+1,i,m,k

1

Moving the term (−
!k

k
′
=1 W̃t

′
+1,i,j

′
,k

′ ) to the right-hand side gives

k(

k
′
=1

W̃t
′
,i,j

′
,k ≥max

"
0, β̃t

′
,i,j

′ −λt
′
,j

′
(

m∈ai

W̃t
′
+1,i,m,k

1
+

k(

k
′
=1

W̃t
′
+1,i,j

′
,k

′

=
k(

k
′
=1

W ∗
t
′
,i,j

′
,k

The last equality is due to the construction of W ∗. Thus, at t
′
,
!k

k
′
=1W

∗
t
′
,i,j,k

′ ≤
!k

k
′
=1 W̃t

′
,i,j,k

′ for

all j, i in aj and k. Then, using the same way to set W ∗ for product j
′
at t

′ − 1 for all i ∈ aj and

k gives

k(

k
′
=1

W̃t
′−1,i,j

′
,k

≥max

"
0, β̃t

′−1,i,j
′ −λt

′−1,j
′
(

m∈ai

W̃t
′
,i,m,k

1
+

k(

k
′
=1

W̃t
′
,i,j

′
,k

′

=max

+
-

.

k(

k
′
=1

W̃t
′
,i,j

′
,k

′ , β̃t
′−1,i,j

′ −λt
′−1,j

′
(

m∈ai

W̃t
′
,i,m,k +

k(

k
′
=1

W̃t
′
,i,j

′
,k

′

6
7

8

=max

+
-

.

k(

k
′
=1

W̃t
′
,i,j

′
,k

′ ,
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β̃t
′−1,i,j

′ −λt
′−1,j

′
(

m∈ai\j
′

W̃t
′
,i,m,k +(1−λt

′−1,j
′ )

k(

k
′
=1

W̃t
′
,i,j

′
,k

′ +λt
′−1,j

′

k−1(

k
′
=1

W̃t
′
,i,j

′
,k

′

6
7

8

≥max

+
-

.

k(

k
′
=1

W ∗
t
′
,i,j

′
,k

′ , β̃t
′−1,i,j

′ −λt
′−1,j

′
(

m∈ai

W ∗
t
′
,i,m,k

+
k(

k
′
=1

W ∗
t
′
,i,j

′
,k

′

6
7

8

=max

"
0, β̃t

′−1,i,j
′ −λt

′−1,j
′
(

m∈ai

W ∗
t
′
,i,m,k

1
+

k(

k
′
=1

W ∗
t
′
,i,j

′
,k

′

=
k(

k
′
=1

W ∗
t
′−1,i,j

′
,k

The first inequality follows because W̃ satisfies Lemma 1. The second inequality is due to 0 ≤

λt
′−1,j

′ ≤ 1 and
!k

k
′
=1W

∗
t
′
,i,j

′
,k

′ ≤
!k

k
′
=1 W̃t

′
,i,j

′
,k

′ for all i in aj
′
and k. The last equality is due to

the construction of W ∗. Thus,
!k

k
′
=1W

∗
t,i,j

′
,k

′ ≤
!k

k
′
=1 W̃t,i,j

′
,k

′ for all t≤ t
′
, i in aj

′
and k. It leads
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Now, let Aj
′

∗ =
;
i∈ aj

′
:
!ci

k=1(W
∗
t
′
,i,j

′
,k
−W ∗

t
′
+1,i,j

′
,k
) = β∗

t
′
,i,j

′ −λt
′
,j

′
!

m∈ai
W ∗

t
′
+1,i,m,k

<
, we have

(

i∈aj
′

ci(

k=1

W ∗
t
′
,i,j

′
,k
−

(

i∈aj
′

ci(

k=1

W ∗
t
′
+1,i,j

′
,k

=
(

i∈aj
′

ci(

k=1

(W ∗
t
′
,i,j

′
,k
−W ∗

t
′
+1,i,j

′
,k
)

=
(

i∈aj
′

max

"
0,β∗

t
′
,i,j

′ −λt
′
,j

′
(

m∈ai

W ∗
t
′
+1,i,m,ci

1

=
(

i∈Aj
′

∗

(β∗
t
′
,i,j

′ −λt
′
,j

′
(

m∈ai

W ∗
t
′
+1,i,m,ci

)

≤
(

i∈aj
′

β∗
t
′
,i,j

′ −
(

i∈Aj
′

∗

λt
′
,j

′
(

m∈ai

W ∗
t
′
+1,i,m,ci

≤λt
′
,j

′fj′

The second to the last inequality follows because β∗
t
′
,i,j

′ ≥ 0 as shown in Step 2 of the proof of

Lemma 1. The last inequality is due to the nonnegativity ofW and (27), i.e.,
!

i∈aj β
∗
t
′
,i,j

′ = λt
′
,j

′fj′ .

Thus, successively constructing the values backwards in time yields a feasible solution

(W ∗,β∗,γ∗, δ∗) that satisfies (33). Moreover,
!k

k
′
=1W

∗
t,i,j,k ≤

!k

k
′
=1 W̃t,i,j,k for all t, i, j, and k by

construction. Therefore,
!

j

!
i∈aj

!ci

k
′
=1

W ∗
1,i,j,k ≤

!
j

!
i∈aj

!ci

k
′
=1

W̃1,i,j,k, the objective value of

(W ∗,β∗,γ∗, δ∗) is less than or equal to that of (W̃ , β̃, γ̃, δ̃). Therefore, either we obtain an optimal

solution that satisfies (33) or we find the contradiction that (W̃ , β̃, γ̃, δ̃) is not an optimal solution.

This completes the proof. □
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EC.2. Detailed Results on Policy Performance

There are two kinds of tables in this section. For the ones reporting policy performance, the first

column shows the parameters (T, I,κ,α) for each hotel instance or (T,N,κ,α) for each hub-and-

spoke instance. The second to fifth columns show the means and standard errors (SEs) obtained

by RB, PB, PBc and DEC over 100,000 sample paths. The last column gives the upper bound on

the optimal expected revenue, which is the optimal objective value of (P).

For the ones reporting comparison between policies, the first column shows the parameters

(I,κ,α) for each hotel instance or (N,κ,α) for each hub-and-spoke instance. Then, the results are

grouped by the number of periods (T ). We show the percentage gains of PB and PBc over RB.

We also report the percentage gaps of RB and PBc between the average revenues and the upper

bound as PBc has the best performance. Finally, we show the average revenues obtained by DEC

and the percent difference comparing PBc to DEC, which is calculated as (PBc - DEC)/DEC.
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EC.2.1. Policy Performance on Hotel Instances

Parameters RB PB PBc DEC Upp.
(T, I,κ,α) Mean SE Mean SE Mean SE Mean SE Bnd.
(50,2,4,1.6) 5053 2.1 5062 2.1 5120 2.0 5164 2.0 5174
(50,2,4,2.2) 6458 2.1 6478 2.1 6555 2.1 6581 2.1 6634
(50,2,4,3.0) 4658 2.1 4666 2.1 4728 2.0 4746 2.0 4794
(50,3,4,1.6) 6273 2.3 6276 2.3 6289 2.3 6309 2.4 6419
(50,3,4,2.2) 3846 1.6 3851 1.6 3941 1.5 4041 1.5 4092
(50,3,4,3.0) 2327 1.1 2329 1.1 2335 1.1 2353 1.1 2398
(50,4,4,1.6) 3192 1.5 3197 1.5 3214 1.5 3233 1.6 3297
(50,4,4,2.2) 1584 0.8 1588 0.7 1593 0.7 1640 0.8 1672
(50,4,4,3.0) 3364 2.0 3395 2.0 3401 2.0 3488 2.1 3561
(50,5,4,1.6) 8260 3.2 8211 3.2 8286 3.2 8370 3.5 8626
(50,5,4,2.2) 6979 3.2 7004 3.2 7021 3.2 7126 3.5 7381
(50,5,4,3.0) 6009 3.0 6040 3.0 6028 2.9 6107 3.3 6361
(50,2,8,1.6) 6410 3.3 6421 3.3 6439 3.3 6453 3.3 6456
(50,2,8,2.2) 10235 4.9 10245 4.9 10472 5.0 10609 4.9 10651
(50,2,8,3.0) 4251 2.3 4250 2.3 4326 2.2 4349 2.2 4355
(50,3,8,1.6) 6257 3.9 6270 3.9 6279 3.9 6314 4.1 6361
(50,3,8,2.2) 6139 4.0 6128 4.1 6168 4.0 6230 4.0 6253
(50,3,8,3.0) 5990 4.1 5991 4.1 6012 4.0 6061 4.1 6090
(50,4,8,1.6) 12567 7.0 12615 7.0 12607 7.0 12746 7.4 12928
(50,4,8,2.2) 8545 5.1 8566 5.0 8590 5.0 8685 5.1 8771
(50,4,8,3.0) 4261 2.7 4261 2.7 4271 2.7 4277 2.9 4344
(50,5,8,1.6) 5508 3.8 5541 3.8 5534 3.8 5603 4.1 5692
(50,5,8,2.2) 12674 8.1 12704 8.0 12703 8.0 12827 8.7 13029
(50,5,8,3.0) 13529 7.3 13526 7.3 13564 7.3 13566 7.7 13948

Table EC.1: Policy Performance (Mean and Standard Error (SE)) for Hotel Instances with 50 Periods Based
on 100,000 Sample Paths
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Parameters RB PB PBc DEC Upp.
(T, I,κ,α) Mean SE Mean SE Mean SE Mean SE Bnd.
(100,2,4,1.6) 10704 2.1 10713 2.1 10942 2.0 10993 2.0 11066
(100,2,4,2.2) 4896 1.5 4905 1.5 5061 1.4 5166 1.3 5171
(100,2,4,3.0) 1277 0.4 1277 0.4 1277 0.4 1283 0.4 1290
(100,3,4,1.6) 10856 3.2 10866 3.1 10898 3.1 10953 3.2 11068
(100,3,4,2.2) 4685 1.8 4696 1.8 4716 1.8 4744 1.8 4782
(100,3,4,3.0) 2771 1.0 2779 1.0 2776 1.0 2806 1.0 2835
(100,4,4,1.6) 9304 2.9 9318 2.8 9340 2.8 9421 2.9 9518
(100,4,4,2.2) 9171 3.0 9219 2.9 9243 2.9 9385 3.1 9542
(100,4,4,3.0) 6166 2.7 6200 2.7 6200 2.7 6300 2.9 6394
(100,5,4,1.6) 13773 3.6 13800 3.6 13835 3.5 14021 3.6 14247
(100,5,4,2.2) 12665 4.5 12689 4.4 12721 4.4 12985 4.6 13244
(100,5,4,3.0) 8865 3.7 8876 3.7 8933 3.7 9101 3.9 9283
(100,2,8,1.6) 17316 6.4 17315 6.4 17435 6.3 17496 6.3 17516
(100,2,8,2.2) 17266 4.5 17266 4.5 17566 4.7 17696 4.7 17773
(100,2,8,3.0) 11011 3.1 11014 3.1 11083 3.2 11111 3.2 11134
(100,3,8,1.6) 29776 7.9 29761 7.9 29941 8.0 30151 8.2 30324
(100,3,8,2.2) 19427 7.6 19478 7.5 19532 7.5 19633 7.8 19763
(100,3,8,3.0) 11462 6.4 11491 6.3 11501 6.3 11549 6.5 11629
(100,4,8,1.6) 14214 6.0 14266 5.9 14327 5.9 14449 6.2 14559
(100,4,8,2.2) 19789 6.8 19800 6.7 19883 6.8 20063 7.0 20247
(100,4,8,3.0) 15995 6.4 16022 6.4 16021 6.4 16119 6.8 16299
(100,5,8,1.6) 21463 8.2 21492 8.2 21512 8.2 21671 8.9 21942
(100,5,8,2.2) 22072 8.4 22086 8.4 22117 8.3 22324 8.7 22539
(100,5,8,3.0) 17447 8.3 17492 8.3 17500 8.3 17620 8.6 17814

Table EC.2: Policy Performance (Mean and Standard Error (SE)) for Hotel Instances with 100 Periods Based
on 100,000 Sample Paths
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Parameters RB PB PBc DEC Upp.
(T, I,κ,α) Mean SE Mean SE Mean SE Mean SE Bnd.
(200,2,4,1.6) 32184 4.9 32220 4.9 32550 4.7 32622 4.7 32730
(200,2,4,2.2) 20689 4.7 20745 4.6 21585 3.9 21653 3.9 21711
(200,2,4,3.0) 20933 3.3 20948 3.3 21159 3.5 21201 3.6 21290
(200,3,4,1.6) 39848 5.7 39876 5.7 39977 5.7 40642 5.8 40898
(200,3,4,2.2) 23584 5.2 23644 5.1 24091 4.8 24212 4.9 24329
(200,3,4,3.0) 11965 3.5 12006 3.5 12139 3.3 12229 3.4 12322
(200,4,4,1.6) 24527 4.5 24526 4.5 24681 4.4 24908 4.5 25085
(200,4,4,2.2) 34357 6.2 34354 6.2 34575 6.2 34931 6.5 35279
(200,4,4,3.0) 10504 3.7 10533 3.7 10524 3.7 10666 3.8 10802
(200,5,4,1.6) 27829 6.0 27829 5.9 27971 5.7 28095 5.9 28365
(200,5,4,2.2) 29550 7.9 29632 7.7 30615 7.0 31087 6.9 31411
(200,5,4,3.0) 23065 7.3 23125 7.2 23215 7.1 23571 7.3 23896
(200,2,8,1.6) 46332 8.1 46342 8.1 46385 8.2 46382 8.2 46495
(200,2,8,2.2) 36265 8.8 36310 8.7 37091 8.2 37188 8.1 37226
(200,2,8,3.0) 23219 5.2 23222 5.2 23246 5.2 23282 5.1 23332
(200,3,8,1.6) 31804 9.5 31907 9.4 32031 9.3 33187 8.2 33252
(200,3,8,2.2) 54543 14.9 54695 14.8 56523 13.5 56698 13.6 56837
(200,3,8,3.0) 22540 5.4 22538 5.4 22889 5.3 22977 5.5 23064
(200,4,8,1.6) 57057 13.1 57084 13.1 57255 13.0 57557 13.4 57820
(200,4,8,2.2) 41742 11.0 41782 11.0 42780 10.8 42921 11.0 43105
(200,4,8,3.0) 34856 8.7 34874 8.7 34937 8.8 35194 9.3 35442
(200,5,8,1.6) 32751 8.2 32782 8.2 32993 8.1 33174 8.5 33408
(200,5,8,2.2) 64819 16.1 64885 16.0 66023 15.6 66684 15.9 67013
(200,5,8,3.0) 42624 11.7 42654 11.7 42852 11.5 43224 12.0 43493

Table EC.3: Policy Performance (Mean and Standard Error (SE)) for Hotel Instances with 200 Periods Based
on 100,000 Sample Paths
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Parameters RB PB PBc DEC Upp.
(T, I,κ,α) Mean SE Mean SE Mean SE Mean SE Bnd.
(400,2,4,1.6) 79995 8.7 80067 8.7 81459 7.4 82390 8.0 82588
(400,2,4,2.2) 30195 6.0 30249 6.0 31637 4.7 31726 4.5 31733
(400,2,4,3.0) 48166 6.6 48166 6.6 48467 6.4 48593 6.4 48705
(400,3,4,1.6) 39751 5.8 39756 5.8 39815 5.7 39977 5.6 40112
(400,3,4,2.2) 31171 5.5 31196 5.5 32237 4.6 32378 4.5 32472
(400,3,4,3.0) 60923 8.8 60956 8.8 61257 9.1 61586 9.2 61914
(400,4,4,1.6) 50554 7.4 50559 7.3 50822 7.1 51084 7.2 51381
(400,4,4,2.2) 61680 9.6 61740 9.6 63447 8.5 63719 8.5 64015
(400,4,4,3.0) 33688 6.3 33723 6.3 33839 6.1 34128 6.2 34393
(400,5,4,1.6) 61812 8.7 61760 8.6 62438 8.8 62883 9.0 63274
(400,5,4,2.2) 107527 15.3 107608 15.3 110220 14.2 111278 14.5 111984
(400,5,4,3.0) 41044 7.4 41078 7.3 41184 7.3 41587 7.7 41976
(400,2,8,1.6) 26287 3.6 26309 3.6 26601 3.9 27154 3.7 27205
(400,2,8,2.2) 27093 5.6 27127 5.6 27776 5.1 27812 5.1 27835
(400,2,8,3.0) 91855 14.1 91939 14.0 93581 14.3 93756 14.6 93881
(400,3,8,1.6) 126464 17.5 126462 17.4 126934 17.6 128212 18.8 128581
(400,3,8,2.2) 69251 11.9 69268 11.9 71121 11.3 71847 10.9 72019
(400,3,8,3.0) 52369 10.0 52346 10.0 52395 10.0 52472 10.0 52586
(400,4,8,1.6) 103514 15.8 103492 15.8 103816 15.7 104079 16.3 104472
(400,4,8,2.2) 157837 32.6 157858 32.6 166155 28.0 166582 28.7 167046
(400,4,8,3.0) 71153 14.5 71159 14.5 71413 14.2 71686 14.7 71906
(400,5,8,1.6) 86355 17.1 86435 17.0 87797 16.6 88127 16.9 88389
(400,5,8,2.2) 89108 16.4 89165 16.4 92457 15.9 92795 16.4 93098
(400,5,8,3.0) 56041 13.4 56050 13.3 56201 13.3 56536 13.7 56736

Table EC.4: Policy Performance (Mean and Standard Error (SE)) for Hotel Instances with 400 Periods Based
on 100,000 Sample Paths
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T = 50 T = 100
Parameters % Gain to RB % Gap to UB % PBc % Gain to RB % Gap to UB % PBc

(I,κ,α) PB PBc RB PBc To DEC PB PBc RB PBc To DEC
(2,4,1.6) 0.191 1.336 2.352 1.048 -0.849 0.086 2.222 3.270 1.121 -0.468
(2,4,2.2) 0.308 1.499 2.663 1.204 -0.399 0.179 3.362 5.306 2.122 -2.030
(2,4,3.0) 0.166 1.496 2.830 1.377 -0.376 0.065 0.065 1.003 0.938 -0.398
(3,4,1.6) 0.043 0.250 2.270 2.026 -0.321 0.089 0.385 1.917 1.539 -0.500
(3,4,2.2) 0.151 2.468 6.030 3.711 -2.490 0.244 0.672 2.029 1.371 -0.578
(3,4,3.0) 0.105 0.367 2.968 2.612 -0.756 0.288 0.191 2.277 2.090 -1.080
(4,4,1.6) 0.156 0.668 3.162 2.515 -0.604 0.153 0.389 2.249 1.869 -0.861
(4,4,2.2) 0.282 0.595 5.286 4.722 -2.891 0.524 0.790 3.886 3.127 -1.505
(4,4,3.0) 0.922 1.090 5.522 4.492 -2.509 0.552 0.550 3.567 3.037 -1.586
(5,4,1.6) -0.596 0.313 4.244 3.944 -1.003 0.193 0.452 3.329 2.891 -1.325
(5,4,2.2) 0.359 0.602 5.449 4.879 -1.473 0.192 0.441 4.369 3.947 -2.034
(5,4,3.0) 0.501 0.307 5.531 5.241 -1.292 0.114 0.757 4.494 3.771 -1.849
(2,8,1.6) 0.180 0.455 0.714 0.262 -0.216 -0.005 0.692 1.143 0.459 -0.349
(2,8,2.2) 0.095 2.310 3.900 1.680 -1.295 0.000 1.739 2.852 1.163 -0.734
(2,8,3.0) -0.003 1.773 2.399 0.669 -0.529 0.031 0.651 1.103 0.459 -0.252
(3,8,1.6) 0.202 0.350 1.632 1.288 -0.554 -0.052 0.553 1.805 1.262 -0.696
(3,8,2.2) -0.166 0.475 1.825 1.359 -1.005 0.260 0.537 1.699 1.171 -0.515
(3,8,3.0) 0.017 0.373 1.645 1.278 -0.803 0.249 0.341 1.434 1.098 -0.419
(4,8,1.6) 0.389 0.320 2.798 2.487 -1.092 0.369 0.796 2.374 1.597 -0.846
(4,8,2.2) 0.248 0.521 2.572 2.064 -1.095 0.052 0.476 2.262 1.797 -0.897
(4,8,3.0) 0.014 0.243 1.924 1.686 -0.147 0.167 0.164 1.862 1.701 -0.603
(5,8,1.6) 0.609 0.481 3.246 2.780 -1.233 0.134 0.225 2.180 1.960 -0.734
(5,8,2.2) 0.236 0.231 2.725 2.501 -0.967 0.065 0.207 2.073 1.870 -0.927
(5,8,3.0) -0.026 0.259 2.999 2.748 -0.009 0.256 0.301 2.061 1.766 -0.686

Table EC.5: Policy Comparison for Hotel Instances with 50 and 100 Periods Based on 100,000 Sample Paths
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T = 200 T = 400
Parameters % Gain to RB % Gap to UB % PBc % Gain to RB % Gap to UB % PBc

(T, I,κ,α) PB PBc RB PBc To DEC PB PBc RB PBc To DEC
(2,4,1.6) 0.110 1.136 1.668 0.551 -0.221 0.090 1.831 3.140 1.366 -1.130
(2,4,2.2) 0.268 4.327 4.705 0.582 -0.314 0.177 4.776 4.846 0.302 -0.278
(2,4,3.0) 0.069 1.081 1.674 0.611 -0.195 -0.001 0.625 1.107 0.489 -0.259
(3,4,1.6) 0.071 0.325 2.568 2.251 -1.637 0.012 0.162 0.901 0.741 -0.405
(3,4,2.2) 0.258 2.154 3.064 0.976 -0.496 0.080 3.420 4.005 0.722 -0.434
(3,4,3.0) 0.344 1.456 2.899 1.486 -0.733 0.054 0.548 1.600 1.061 -0.534
(4,4,1.6) -0.006 0.627 2.223 1.610 -0.912 0.008 0.530 1.609 1.088 -0.513
(4,4,2.2) -0.008 0.635 2.613 1.994 -1.019 0.097 2.865 3.647 0.887 -0.426
(4,4,3.0) 0.281 0.195 2.758 2.568 -1.328 0.104 0.451 2.052 1.610 -0.845
(5,4,1.6) -0.001 0.511 1.891 1.389 -0.441 -0.085 1.013 2.310 1.320 -0.707
(5,4,2.2) 0.278 3.604 5.925 2.535 -1.519 0.075 2.505 3.980 1.575 -0.951
(5,4,3.0) 0.260 0.649 3.477 2.850 -1.510 0.083 0.339 2.219 1.887 -0.970
(2,8,1.6) 0.023 0.116 0.351 0.236 0.007 0.084 1.195 3.373 2.218 -2.035
(2,8,2.2) 0.126 2.280 2.582 0.361 -0.261 0.127 2.520 2.665 0.212 -0.130
(2,8,3.0) 0.011 0.117 0.482 0.365 -0.152 0.092 1.879 2.159 0.320 -0.186
(3,8,1.6) 0.326 0.714 4.356 3.673 -3.483 -0.001 0.372 1.646 1.280 -0.997
(3,8,2.2) 0.279 3.629 4.036 0.553 -0.308 0.026 2.701 3.844 1.246 -1.010
(3,8,3.0) -0.007 1.548 2.275 0.762 -0.386 -0.042 0.051 0.414 0.363 -0.147
(4,8,1.6) 0.047 0.347 1.320 0.978 -0.524 -0.021 0.291 0.917 0.628 -0.253
(4,8,2.2) 0.097 2.487 3.161 0.753 -0.327 0.013 5.270 5.513 0.533 -0.256
(4,8,3.0) 0.052 0.234 1.655 1.425 -0.730 0.008 0.365 1.047 0.686 -0.381
(5,8,1.6) 0.093 0.737 1.966 1.243 -0.545 0.092 1.669 2.300 0.669 -0.374
(5,8,2.2) 0.102 1.857 3.274 1.478 -0.993 0.065 3.759 4.286 0.689 -0.365
(5,8,3.0) 0.070 0.534 1.998 1.475 -0.860 0.018 0.286 1.226 0.944 -0.593

Table EC.6: Policy Comparison for Hotel Instances with 200 and 400 Periods Based on 100,000 Sample Paths
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EC.2.2. Policy Performance on Hub-and-Spoke Instances

Parameters RB PB PBc DEC Upp.
(T,N,κ,α) Mean SE Mean SE Mean SE Mean SE Bnd.
(50,2,4,1.6) 1230 1.2 1244 1.2 1243 1.2 1249 1.3 1259
(50,2,4,2.2) 595 0.4 599 0.4 600 0.4 601 0.4 615
(50,2,4,3.0) 2772 1.5 2777 1.5 2783 1.5 2752 1.6 2833
(50,3,4,1.6) 2919 1.2 2918 1.2 2923 1.2 2897 1.3 3015
(50,3,4,2.2) 3472 1.7 3454 1.7 3485 1.7 3441 1.7 3575
(50,3,4,3.0) 2537 1.4 2537 1.4 2560 1.4 2535 1.5 2628
(50,4,4,1.6) 2799 1.3 2789 1.3 2806 1.3 2778 1.3 2920
(50,4,4,2.2) 2641 1.4 2638 1.4 2639 1.4 2633 1.5 2767
(50,4,4,3.0) 2196 1.4 2190 1.4 2201 1.4 2109 1.3 2297
(50,5,4,1.6) 4823 2.0 4807 1.9 4826 1.9 4760 2.0 5097
(50,5,4,2.2) 2796 1.5 2773 1.4 2793 1.4 2702 1.5 2943
(50,5,4,3.0) 3328 1.7 3297 1.7 3319 1.7 3213 1.8 3554
(50,2,8,1.6) 1186 1.7 1192 1.7 1198 1.7 1198 1.7 1204
(50,2,8,2.2) 3104 2.8 3107 2.8 3112 2.8 3101 2.9 3132
(50,2,8,3.0) 4166 2.8 4172 2.8 4197 2.8 4105 2.6 4233
(50,3,8,1.6) 5706 3.5 5711 3.5 5725 3.5 5710 3.6 5837
(50,3,8,2.2) 7141 4.6 7138 4.6 7150 4.5 7122 4.7 7296
(50,3,8,3.0) 8634 4.4 8601 4.4 8668 4.5 8413 4.2 8856
(50,4,8,1.6) 4761 2.7 4746 2.7 4764 2.7 4714 2.8 4912
(50,4,8,2.2) 6315 3.5 6304 3.5 6316 3.5 6196 3.6 6479
(50,4,8,3.0) 5437 3.2 5416 3.2 5441 3.2 5275 3.1 5589
(50,5,8,1.6) 6501 3.7 6496 3.7 6502 3.7 6408 3.8 6750
(50,5,8,2.2) 8594 5.1 8574 5.1 8605 5.1 8509 5.1 8899
(50,5,8,3.0) 6870 4.2 6839 4.2 6875 4.3 6516 3.8 7160

Table EC.7: Policy Performance (Mean and Standard Error (SE)) for Hub-and-Spoke Instances with 50
Periods Based on 100,000 Sample Paths
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Parameters RB PB PBc DEC Upp.
(T,N,κ,α) Mean SE Mean SE Mean SE Mean SE Bnd.
(100,2,4,1.6) 5667 1.5 5662 1.5 5677 1.5 5678 1.5 5739
(100,2,4,2.2) 9732 3.0 9725 3.0 9790 3.0 9827 3.1 9934
(100,2,4,3.0) 6955 3.0 6969 3.0 7062 2.9 7087 2.9 7217
(100,3,4,1.6) 5886 1.9 5876 1.8 5889 1.8 5863 1.9 6018
(100,3,4,2.2) 8468 2.5 8436 2.5 8478 2.5 8383 2.5 8642
(100,3,4,3.0) 4283 1.9 4280 1.9 4290 1.9 4243 1.9 4371
(100,4,4,1.6) 6320 2.3 6316 2.2 6331 2.2 6290 2.3 6488
(100,4,4,2.2) 5569 2.1 5570 2.1 5582 2.0 5538 2.1 5759
(100,4,4,3.0) 3511 1.6 3508 1.6 3516 1.6 3461 1.7 3637
(100,5,4,1.6) 5570 1.9 5567 1.9 5579 1.9 5518 2.0 5750
(100,5,4,2.2) 6417 2.4 6420 2.4 6416 2.4 6331 2.5 6692
(100,5,4,3.0) 3985 1.8 3974 1.7 3986 1.7 3941 1.8 4148
(100,2,8,1.6) 16081 5.0 16088 5.0 16109 5.0 16100 5.0 16202
(100,2,8,2.2) 14667 6.2 14673 6.2 14676 6.2 14647 6.3 14759
(100,2,8,3.0) 5834 2.3 5837 2.3 5843 2.2 5824 2.2 5907
(100,3,8,1.6) 13182 4.7 13185 4.6 13187 4.6 13112 4.8 13375
(100,3,8,2.2) 9331 4.8 9320 4.8 9342 4.8 9276 4.8 9437
(100,3,8,3.0) 6777 3.8 6785 3.8 6794 3.8 6770 3.8 6861
(100,4,8,1.6) 13921 5.4 13920 5.4 13937 5.3 13859 5.5 14218
(100,4,8,2.2) 10753 4.8 10747 4.7 10757 4.7 10679 4.9 10944
(100,4,8,3.0) 14702 6.0 14675 6.0 14693 6.0 14502 6.1 14992
(100,5,8,1.6) 13012 5.0 12984 4.9 13019 4.9 12932 5.0 13272
(100,5,8,2.2) 13665 5.4 13620 5.3 13649 5.3 13488 5.4 13954
(100,5,8,3.0) 8971 4.5 8958 4.4 8975 4.4 8847 4.6 9195

Table EC.8: Policy Performance (Mean and Standard Error (SE)) for Hub-and-Spoke Instances with 100
Periods Based on 100,000 Sample Paths
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Parameters RB PB PBc DEC Upp.
(T,N,κ,α) Mean SE Mean SE Mean SE Mean SE Bnd.
(200,2,4,1.6) 8541 2.1 8552 2.0 8590 2.0 8667 2.0 8742
(200,2,4,2.2) 16883 3.0 16883 3.0 17119 3.0 17098 3.1 17243
(200,2,4,3.0) 12737 2.9 12742 2.9 12898 2.7 12943 2.8 13094
(200,3,4,1.6) 10334 2.5 10344 2.5 10349 2.5 10345 2.5 10471
(200,3,4,2.2) 26204 5.4 26182 5.3 26330 5.2 26467 5.1 26900
(200,3,4,3.0) 11443 3.2 11450 3.1 11494 3.1 11551 3.1 11741
(200,4,4,1.6) 11937 2.7 11938 2.7 11943 2.6 11925 2.7 12156
(200,4,4,2.2) 8940 2.2 8919 2.2 8948 2.2 8930 2.2 9144
(200,4,4,3.0) 9672 2.7 9654 2.7 9669 2.7 9643 2.7 9894
(200,5,4,1.6) 13151 3.4 13152 3.3 13158 3.3 13164 3.5 13458
(200,5,4,2.2) 12250 2.8 12200 2.7 12226 2.7 12108 2.7 12545
(200,5,4,3.0) 13213 3.6 13187 3.6 13202 3.5 13139 3.6 13636
(200,2,8,1.6) 4786 3.2 4803 3.2 4809 3.2 4804 3.3 4831
(200,2,8,2.2) 25420 8.2 25445 8.1 25690 7.8 25728 7.9 25814
(200,2,8,3.0) 24296 9.0 24302 9.0 24488 8.7 24373 8.5 24565
(200,3,8,1.6) 23324 7.0 23336 7.0 23353 6.9 23348 7.0 23519
(200,3,8,2.2) 24427 6.7 24430 6.6 24555 6.5 24643 6.4 24847
(200,3,8,3.0) 17100 6.8 17110 6.8 17126 6.8 17094 6.8 17293
(200,4,8,1.6) 32237 8.0 32220 7.9 32239 7.9 32157 8.1 32638
(200,4,8,2.2) 29357 8.4 29342 8.3 29380 8.3 29376 8.3 29674
(200,4,8,3.0) 14460 4.6 14455 4.6 14480 4.6 14440 4.7 14701
(200,5,8,1.6) 22502 6.8 22489 6.8 22507 6.8 22455 6.8 22850
(200,5,8,2.2) 29924 9.0 29911 8.9 29936 8.9 29932 9.1 30343
(200,5,8,3.0) 14522 6.4 14522 6.3 14549 6.3 14486 6.4 14756

Table EC.9: Policy Performance (Mean and Standard Error (SE)) for Hub-and-Spoke Instances with 200
Periods Based on 100,000 Sample Paths
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Parameters RB PB PBc DEC Upp.
(T,N,κ,α) Mean SE Mean SE Mean SE Mean SE Bnd.
(400,2,4,1.6) 21155 3.5 21179 3.5 21657 3.5 22969 2.9 23052
(400,2,4,2.2) 15481 1.7 15462 1.7 15529 1.7 15516 1.7 15605
(400,2,4,3.0) 29057 5.2 29074 5.1 29558 4.9 29599 4.8 29749
(400,3,4,1.6) 53469 6.3 53427 6.3 53657 6.2 53946 6.1 54441
(400,3,4,2.2) 43910 5.8 43878 5.7 44054 5.8 44131 5.7 44616
(400,3,4,3.0) 22211 4.0 22202 3.9 22300 3.9 22381 3.8 22649
(400,4,4,1.6) 18708 3.4 18710 3.4 18717 3.4 18715 3.5 18930
(400,4,4,2.2) 28639 4.5 28607 4.5 28662 4.4 28647 4.5 29078
(400,4,4,3.0) 28893 5.6 28871 5.5 28938 5.5 28990 5.5 29432
(400,5,4,1.6) 23864 3.9 23843 3.8 23859 3.8 23856 3.8 24186
(400,5,4,2.2) 23685 4.0 23670 4.0 23693 4.0 23719 3.9 24129
(400,5,4,3.0) 14064 3.0 14048 2.9 14073 2.9 14049 2.9 14360
(400,2,8,1.6) 101108 14.9 101135 14.9 101680 15.1 102121 15.9 102319
(400,2,8,2.2) 49006 10.6 49071 10.6 50363 11.5 50464 11.7 50616
(400,2,8,3.0) 69646 11.8 69652 11.8 69911 11.6 69880 11.6 70119
(400,3,8,1.6) 55071 11.2 55104 11.1 55346 10.9 55781 10.5 56071
(400,3,8,2.2) 74023 13.4 74047 13.3 74618 13.1 74927 12.9 75401
(400,3,8,3.0) 66587 12.8 66571 12.7 66671 12.6 66679 12.7 67092
(400,4,8,1.6) 63338 11.0 63318 10.9 63433 10.9 63630 10.8 64099
(400,4,8,2.2) 50849 11.1 50864 11.0 51251 10.8 51623 10.8 51948
(400,4,8,3.0) 58200 13.3 58171 13.3 58318 13.1 58363 13.0 58915
(400,5,8,1.6) 34093 6.5 34077 6.4 34087 6.4 34034 6.5 34420
(400,5,8,2.2) 70634 12.2 70570 12.2 70756 12.1 70853 11.9 71586
(400,5,8,3.0) 76214 15.7 76172 15.6 76270 15.5 76291 15.3 77154

Table EC.10: Policy Performance (Mean and Standard Error (SE)) for Hub-and-Spoke Instances with 400
Periods Based on 100,000 Sample Paths
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T = 50 T = 100
Parameters % Gain to RB % Gap to UB % PBc % Gain to RB % Gap to UB % PBc

(N,κ,α) PB PBc RB PBc To DEC PB PBc RB PBc To DEC
(2,4,1.6) 1.179 1.051 2.343 1.317 -0.509 -0.082 0.183 1.258 1.078 -0.024
(2,4,2.2) 0.602 0.749 3.164 2.438 -0.290 -0.066 0.601 2.036 1.448 -0.375
(2,4,3.0) 0.204 0.397 2.175 1.787 1.126 0.208 1.540 3.636 2.152 -0.350
(3,4,1.6) -0.033 0.123 3.162 3.043 0.908 -0.164 0.050 2.197 2.149 0.444
(3,4,2.2) -0.517 0.358 2.875 2.527 1.257 -0.377 0.114 2.013 1.901 1.131
(3,4,3.0) -0.007 0.895 3.454 2.590 0.960 -0.077 0.157 2.009 1.856 1.099
(4,4,1.6) -0.381 0.234 4.136 3.912 1.022 -0.067 0.161 2.578 2.421 0.639
(4,4,2.2) -0.092 -0.054 4.544 4.596 0.255 0.018 0.230 3.293 3.070 0.795
(4,4,3.0) -0.271 0.225 4.391 4.176 4.356 -0.079 0.162 3.479 3.323 1.607
(5,4,1.6) -0.336 0.056 5.374 5.321 1.374 -0.049 0.168 3.130 2.968 1.110
(5,4,2.2) -0.846 -0.135 4.970 5.098 3.332 0.042 -0.020 4.104 4.122 1.343
(5,4,3.0) -0.934 -0.266 6.378 6.627 3.287 -0.275 0.030 3.928 3.899 1.155
(2,8,1.6) 0.514 0.986 1.511 0.540 0.036 0.043 0.176 0.746 0.571 0.059
(2,8,2.2) 0.072 0.259 0.875 0.619 0.372 0.042 0.063 0.622 0.559 0.198
(2,8,3.0) 0.152 0.748 1.579 0.843 2.247 0.045 0.151 1.228 1.078 0.339
(3,8,1.6) 0.083 0.336 2.248 1.919 0.273 0.021 0.041 1.446 1.405 0.575
(3,8,2.2) -0.044 0.127 2.124 2.000 0.395 -0.121 0.117 1.125 1.009 0.711
(3,8,3.0) -0.382 0.403 2.510 2.117 3.041 0.122 0.247 1.225 0.981 0.353
(4,8,1.6) -0.316 0.058 3.078 3.022 1.064 -0.007 0.120 2.095 1.978 0.565
(4,8,2.2) -0.171 0.012 2.528 2.517 1.926 -0.059 0.034 1.743 1.709 0.728
(4,8,3.0) -0.395 0.079 2.713 2.636 3.152 -0.189 -0.063 1.934 1.996 1.316
(5,8,1.6) -0.078 0.015 3.688 3.674 1.472 -0.214 0.052 1.961 1.909 0.669
(5,8,2.2) -0.240 0.127 3.426 3.303 1.137 -0.330 -0.116 2.073 2.186 1.192
(5,8,3.0) -0.457 0.068 4.042 3.976 5.516 -0.147 0.046 2.433 2.389 1.447

Table EC.11: Policy Comparison for Hub-and-Spoke Instances with 50 and 100 Periods Based on 100,000
Sample Paths
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T = 200 T = 400
Parameters % Gain to RB % Gap to UB % PBc % Gain to RB % Gap to UB % PBc

(T,N,κ,α) PB PBc RB PBc To DEC PB PBc RB PBc To DEC
(2,4,1.6) 0.130 0.575 2.299 1.737 -0.889 0.113 2.372 8.230 6.053 -5.712
(2,4,2.2) 0.002 1.401 2.091 0.719 0.123 -0.124 0.306 0.792 0.489 0.081
(2,4,3.0) 0.037 1.266 2.729 1.498 -0.347 0.060 1.726 2.326 0.639 -0.138
(3,4,1.6) 0.103 0.154 1.314 1.162 0.044 -0.078 0.352 1.787 1.441 -0.536
(3,4,2.2) -0.084 0.481 2.588 2.119 -0.521 -0.072 0.329 1.582 1.259 -0.173
(3,4,3.0) 0.060 0.450 2.543 2.105 -0.493 -0.040 0.401 1.934 1.541 -0.363
(4,4,1.6) 0.012 0.056 1.807 1.752 0.155 0.010 0.048 1.175 1.128 0.013
(4,4,2.2) -0.242 0.085 2.229 2.146 0.202 -0.110 0.080 1.511 1.432 0.051
(4,4,3.0) -0.188 -0.029 2.239 2.268 0.273 -0.075 0.155 1.830 1.678 -0.178
(5,4,1.6) 0.010 0.054 2.278 2.225 -0.043 -0.085 -0.020 1.334 1.354 0.010
(5,4,2.2) -0.406 -0.191 2.351 2.538 0.976 -0.064 0.035 1.841 1.806 -0.109
(5,4,3.0) -0.202 -0.089 3.098 3.185 0.476 -0.111 0.060 2.058 1.999 0.167
(2,8,1.6) 0.343 0.466 0.923 0.461 0.099 0.027 0.566 1.183 0.624 -0.432
(2,8,2.2) 0.095 1.060 1.525 0.481 -0.147 0.133 2.768 3.180 0.500 -0.201
(2,8,3.0) 0.025 0.790 1.097 0.316 0.469 0.009 0.382 0.676 0.296 0.046
(3,8,1.6) 0.054 0.125 0.829 0.705 0.023 0.059 0.499 1.782 1.293 -0.780
(3,8,2.2) 0.009 0.524 1.689 1.174 -0.356 0.033 0.803 1.827 1.039 -0.413
(3,8,3.0) 0.053 0.146 1.116 0.971 0.183 -0.024 0.127 0.753 0.627 -0.011
(4,8,1.6) -0.051 0.006 1.228 1.222 0.256 -0.031 0.150 1.188 1.040 -0.311
(4,8,2.2) -0.048 0.080 1.070 0.990 0.014 0.030 0.790 2.116 1.342 -0.720
(4,8,3.0) -0.033 0.140 1.641 1.504 0.274 -0.049 0.203 1.214 1.014 -0.077
(5,8,1.6) -0.057 0.025 1.526 1.501 0.232 -0.047 -0.019 0.951 0.970 0.153
(5,8,2.2) -0.043 0.038 1.380 1.342 0.012 -0.090 0.172 1.330 1.160 -0.138
(5,8,3.0) -0.001 0.183 1.581 1.401 0.431 -0.055 0.074 1.219 1.146 -0.027

Table EC.12: Policy Comparison for Hub-and-Spoke Instances with 200 and 400 Periods Based on 100,000
Sample Paths
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EC.3. Detailed Results on Computational Performance

For all tables in Sections EC.3.1 and EC.3.2, the first column gives the parameter (I,κ,α) for

each hotel instance or (N,κ,α) for each hub-and-spoke instance. The remaining columns show

the solution times for T = 50,100,200, and 400 with various formulations, respectively. A number

labeled with * means that Gurobi terminates with “Suboptimal” status, which means that Gurobi

is “unable to satisfy optimality tolerances; a suboptimal solution is available”(Gurobi Optimization

2022). Otherwise, Gurobi terminates with “Optimal” status. Similarly, we report the solution times

for the dynamic programming decomposition (DEC) in Section EC.3.3.
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EC.3.1. Testing (R), (P), and (Dc) with BarTol=1e-6

T = 50 T = 100 T = 200 T = 400
(I,κ,α) (R) (P) (Dc) (R) (P) (Dc) (R) (P) (Dc) (R) (P) (Dc)
(2,4,1.6) 0.7 0.4 0.3 2.1 1.2 1.0 7.6 5.3 4.4 47.7 26.7 39.4
(2,4,2.2) 0.3 0.2 0.3 2.1 1.4 2.5 9.5 6.7 6.6 48.7 34.2 27.8
(2,4,3.0) 0.2 0.2 0.1 0.8 0.8 0.8 3.9 2.5 2.6 17.3 11.7 13.3
(3,4,1.6) 0.7 0.5 0.3 3.8 3.6 1.9 15.7 15.6 11.8 73.4 73.2 63.1
(3,4,2.2) 0.7 0.7 0.4 2.1 2.2 1.5 18.0 18.3 11.5 123.4 96.0 82.7
(3,4,3.0) 0.6 0.4 0.3 2.3 1.9 1.5 13.6 14.3 8.1 38.7 36.3 33.7
(4,4,1.6) 1.2 0.9 0.8 7.7 5.4 4.7 45.1 34.4 28.4 196.1 160.1 152.2
(4,4,2.2) 1.4 0.9 0.9 4.9 3.8 3.0 19.1 16.9 15.4 289.3 253.7 184.8
(4,4,3.0) 1.1 0.7 0.7 4.2 3.1 2.9 18.0 16.9 12.1 110.2 127.1 73.9
(5,4,1.6) 3.8 2.1 1.7 14.7 12.9 9.0 69.3 74.6 48.1 502.0 432.0 263.0
(5,4,2.2) 2.7 1.9 1.5 10.6 11.2 5.9 115.1 68.3 62.7 461.6 322.2 418.4
(5,4,3.0) 1.4 0.8 1.0 9.4 5.7 4.0 45.5 45.7 26.3 243.2 128.3 126.6
(2,8,1.6) 0.4 0.3 0.3 1.8 1.2 1.1 8.5 4.8 5.2 52.2 27.8 36.9
(2,8,2.2) 0.3 0.3 0.2 1.5 0.9 1.0 8.6 5.5 5.1 50.0 25.2 27.2
(2,8,3.0) 0.2 0.2 0.3 0.8 0.5 0.8 4.1 2.2 3.1 24.5 15.7 16.0
(3,8,1.6) 1.0 0.8 0.5 4.8 3.4 2.7 18.9 18.8 14.2 69.4 45.8 56.5
(3,8,2.2) 0.7 0.6 0.4 2.3 2.2 1.8 24.8 25.1 14.5 120.1 76.2 75.2
(3,8,3.0) 0.5 0.5 0.3 2.4 1.8 1.6 8.2 9.2 7.9 22.7 26.8 20.8
(4,8,1.6) 1.6 1.1 1.1 9.4 8.4 6.1 43.0 29.4 30.4 133.7 114.4 121.7
(4,8,2.2) 1.7 1.0 1.2 6.0 4.3 4.0 43.8 37.8 26.1 *500.1 246.0 205.4
(4,8,3.0) 0.8 0.6 0.6 2.9 2.3 2.0 17.0 13.3 16.5 81.6 73.5 75.7
(5,8,1.6) 3.9 3.1 2.0 15.4 11.4 8.1 85.4 83.9 58.5 574.1 767.5 409.9
(5,8,2.2) 2.0 1.2 1.1 13.5 12.6 7.6 98.8 108.5 72.0 458.4 309.9 371.8
(5,8,3.0) 1.5 1.1 1.0 9.4 8.1 4.5 43.9 46.0 25.7 *214.0 245.8 139.4

Table EC.13: Computational Performance on the Hotel Instances with BarTol = 1e-6. The Results
Are Numbers of Seconds for Gurobi to Terminate. * Indicates that Gurobi Terminates With “Sub-
optimal” Status.
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T = 50 T = 100 T = 200 T = 400
(N,κ,α) (R) (P) (Dc) (R) (P) (Dc) (R) (P) (Dc) (R) (P) (Dc)
(2,4,1.6) 0.4 0.3 0.2 1.5 1.0 0.9 7.2 5.1 5.2 43.5 30.7 27.8
(2,4,2.2) 0.3 0.1 0.2 1.2 0.7 0.8 5.3 4.1 3.4 24.6 14.6 14.5
(2,4,3.0) 0.1 0.1 0.1 0.9 0.6 0.6 5.0 2.8 3.6 31.2 36.8 20.0
(3,4,1.6) 0.5 0.3 0.3 2.2 2.3 1.7 13.5 15.0 8.1 52.6 48.2 44.0
(3,4,2.2) 0.6 0.4 0.3 1.6 1.2 1.0 8.0 9.2 5.1 34.2 43.2 30.6
(3,4,3.0) 0.4 0.3 0.3 0.9 0.8 0.8 7.5 8.7 5.0 30.5 26.2 21.9
(4,4,1.6) 0.8 0.5 0.7 3.6 2.8 2.6 20.8 15.8 15.3 76.6 60.0 64.0
(4,4,2.2) 0.7 0.5 0.7 3.0 2.0 2.0 16.3 12.6 12.7 49.8 40.1 47.0
(4,4,3.0) 0.5 0.3 0.5 2.6 2.0 1.7 9.1 5.9 5.8 54.9 37.0 38.7
(5,4,1.6) 1.1 0.7 1.1 6.3 4.6 4.4 29.5 29.2 25.8 143.4 111.3 112.1
(5,4,2.2) 0.8 0.5 0.8 4.5 3.1 3.3 19.1 13.7 16.1 97.7 94.0 73.3
(5,4,3.0) 0.7 0.4 1.0 3.4 2.4 3.0 11.9 8.7 10.5 47.9 43.1 45.2
(2,8,1.6) 0.3 0.2 0.2 1.7 1.2 1.1 7.6 4.6 4.8 49.5 23.0 30.6
(2,8,2.2) 0.2 0.1 0.2 1.0 0.6 0.7 8.9 5.1 4.5 26.8 21.2 22.4
(2,8,3.0) 0.1 0.1 0.2 1.0 0.5 0.6 6.9 4.9 4.8 19.0 12.9 13.9
(3,8,1.6) 0.6 0.4 0.3 2.5 2.8 1.9 8.8 11.1 6.6 *118.6 106.8 80.4
(3,8,2.2) 0.5 0.6 0.3 1.3 1.3 1.3 11.8 12.1 6.2 43.5 53.5 34.5
(3,8,3.0) 0.2 0.1 0.2 1.5 1.0 0.9 5.8 5.3 4.5 46.6 52.7 27.3
(4,8,1.6) 0.7 0.5 0.6 5.0 3.5 3.0 16.2 12.8 14.4 109.2 96.3 106.1
(4,8,2.2) 0.5 0.4 0.6 2.5 1.5 1.8 16.7 15.1 12.7 82.4 82.7 68.8
(4,8,3.0) 0.5 0.2 0.4 1.8 1.1 1.5 8.0 5.9 6.8 45.4 41.4 29.7
(5,8,1.6) 1.1 0.6 1.0 5.7 4.8 5.0 29.4 26.6 22.2 117.2 94.2 133.2
(5,8,2.2) 1.0 0.6 1.1 5.7 4.6 3.8 28.0 18.2 16.8 115.5 91.4 94.4
(5,8,3.0) 0.7 0.4 0.7 3.7 2.1 2.8 19.0 10.3 11.5 81.5 77.7 59.2

Table EC.14: Computational Performance on the Hub-and-Spoke Instances with BarTol = 1e-6.
The Results Are Numbers of Seconds for Gurobi to Terminate. * Indicates that Gurobi Terminates
With “Suboptimal” Status.
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EC.3.2. Testing (P) and (Dc) with BarTol=1e-7

T = 50 T = 100 T = 200 T = 400
(I,κ,α) (P) (Dc) (P) (Dc) (P) (Dc) (P) (Dc)
(2,4,1.6) 0.4 0.4 1.4 1.3 6.9 6.0 49.3 49.9
(2,4,2.2) 0.2 0.3 2.4 2.8 8.2 9.8 61.0 47.8
(2,4,3.0) 0.2 0.1 0.9 0.8 3.1 3.5 *17.0 16.0
(3,4,1.6) 0.6 0.3 3.9 2.5 16.4 15.8 *85.3 148.6
(3,4,2.2) 0.8 0.5 2.4 1.9 19.6 19.8 158.7 273.1
(3,4,3.0) 0.4 0.3 2.3 1.6 15.1 11.8 41.8 48.2
(4,4,1.6) 1.0 0.8 5.7 5.7 61.2 61.8 *183.1 435.8
(4,4,2.2) 1.0 1.1 4.1 4.4 20.8 19.2 *325.8 513.4
(4,4,3.0) 0.8 0.8 4.0 3.4 17.8 14.8 *134.1 146.6
(5,4,1.6) 2.4 2.3 13.1 14.1 96.9 80.7 *466.5 391.7
(5,4,2.2) 2.2 1.8 11.3 7.9 96.1 211.9 *349.7 537.9
(5,4,3.0) 1.0 1.1 6.2 5.6 45.6 32.8 170.7 305.9
(2,8,1.6) 0.3 0.3 1.7 1.5 8.6 6.3 36.4 54.1
(2,8,2.2) 0.3 0.3 1.1 1.2 7.5 7.2 53.9 54.8
(2,8,3.0) 0.2 0.3 0.6 1.0 2.3 3.5 20.1 20.9
(3,8,1.6) 0.9 0.7 3.9 3.2 26.0 29.0 *72.1 126.8
(3,8,2.2) 0.6 0.4 2.4 2.1 25.5 37.5 160.1 279.1
(3,8,3.0) 0.5 0.3 2.3 1.9 9.8 9.7 37.9 47.3
(4,8,1.6) 1.6 1.5 9.7 7.1 61.3 72.6 *128.1 282.7
(4,8,2.2) 1.1 1.3 4.3 5.5 36.5 77.8 481.1 *297.0
(4,8,3.0) 0.7 0.7 2.7 2.6 13.6 19.8 *87.3 143.3
(5,8,1.6) 3.6 2.1 10.7 9.1 103.3 203.7 *829.7 617.1
(5,8,2.2) 1.6 1.3 10.2 7.6 125.5 *100.5 *357.5 *388.4
(5,8,3.0) 1.2 1.0 7.2 5.6 48.3 *35.6 *281.9 276.1

Table EC.15: Computational Performance on the Hotel Instances with BarTol = 1e-7. The Results
Are Numbers of Seconds for Gurobi to Terminate. * Indicates that Gurobi Terminates With “Sub-
optimal” Status.
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T = 50 T = 100 T = 200 T = 400
(N,κ,α) (P) (Dc) (P) (Dc) (P) (Dc) (P) (Dc)
(2,4,1.6) 0.3 0.3 1.3 1.4 5.3 7.2 *40.1 112.3
(2,4,2.2) 0.2 0.2 0.9 1.2 4.6 4.0 19.9 20.5
(2,4,3.0) 0.1 0.1 0.8 2.6 7.5 3.5 32.9 47.5
(3,4,1.6) 0.7 0.4 3.0 2.3 16.3 8.5 *67.7 69.7
(3,4,2.2) 0.5 0.4 1.8 1.9 9.1 7.0 45.9 55.1
(3,4,3.0) 0.2 0.2 1.0 1.2 8.6 6.2 31.1 29.9
(4,4,1.6) 0.8 0.8 3.1 2.9 24.9 16.7 137.9 241.1
(4,4,2.2) 0.7 0.9 2.3 2.5 12.3 12.6 *53.6 119.3
(4,4,3.0) 0.3 0.7 2.2 1.9 6.3 6.6 *40.5 41.8
(5,4,1.6) 1.0 1.2 5.5 4.4 29.9 27.4 134.0 195.1
(5,4,2.2) 0.6 0.8 3.5 3.4 20.1 18.6 115.4 199.4
(5,4,3.0) 0.4 0.8 2.6 3.2 9.0 19.3 87.5 94.6
(2,8,1.6) 0.3 0.2 1.4 1.3 4.5 5.1 34.0 67.2
(2,8,2.2) 0.2 0.2 0.7 0.9 7.2 6.2 30.5 34.6
(2,8,3.0) 0.1 0.1 0.7 0.7 5.3 5.2 15.5 15.6
(3,8,1.6) 0.5 0.5 3.0 1.9 11.1 8.9 *117.8 152.1
(3,8,2.2) 0.7 0.5 1.4 1.5 12.3 8.9 57.4 52.9
(3,8,3.0) 0.2 0.2 1.1 1.2 5.1 5.3 55.8 68.8
(4,8,1.6) 0.7 0.8 4.0 3.6 *16.0 16.2 *110.2 307.5
(4,8,2.2) 0.4 0.7 1.8 2.0 *14.9 *18.9 *95.1 200.5
(4,8,3.0) 0.3 0.5 1.2 1.7 6.4 9.7 *48.7 57.5
(5,8,1.6) 0.7 1.1 4.9 5.5 *32.3 42.5 135.6 297.7
(5,8,2.2) 0.8 1.3 4.4 4.2 20.0 19.7 *94.1 212.7
(5,8,3.0) 0.5 0.8 2.2 3.1 11.3 13.0 97.7 112.2

Table EC.16: Computational Performance on the Hub-and-Spoke Instances with BarTol = 1e-7.
The Results Are Numbers of Seconds for Gurobi to Terminate. * Indicates that Gurobi Terminates
With “Suboptimal” Status.
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EC.3.3. Running Time of the Dynamic Programming Decomposition (DEC)

Hotel Instances Hub-and-Spoke Instances
(I,κ,α) T = 50 T = 100 T = 200 T = 400 (N,κ,α) T = 50 T = 100 T = 200 T = 400
(2,4,1.6) 0.1 0.5 2.0 8.4 (2,4,1.6) 0.3 0.9 4.2 18.1
(2,4,2.2) 0.1 0.4 1.6 6.1 (2,4,2.2) 0.2 0.8 3.1 11.5
(2,4,3.0) 0.1 0.2 1.1 4.6 (2,4,3.0) 0.1 0.6 2.6 9.0
(3,4,1.6) 0.2 0.9 5.0 16.7 (3,4,1.6) 0.6 2.5 9.4 46.9
(3,4,2.2) 0.2 0.7 3.5 14.9 (3,4,2.2) 0.5 1.7 8.2 32.7
(3,4,3.0) 0.1 0.6 2.3 10.8 (3,4,3.0) 0.4 1.2 5.9 22.8
(4,4,1.6) 0.4 2.2 8.7 34.9 (4,4,1.6) 1.3 4.8 21.1 78.1
(4,4,2.2) 0.4 1.6 6.6 31.6 (4,4,2.2) 1.1 3.7 15.4 60.0
(4,4,3.0) 0.3 1.2 4.1 20.3 (4,4,3.0) 0.7 2.9 10.9 45.0
(5,4,1.6) 0.9 4.6 14.9 65.5 (5,4,1.6) 2.6 9.0 37.4 136.8
(5,4,2.2) 0.8 3.0 15.9 65.7 (5,4,2.2) 1.6 6.6 27.2 109.1
(5,4,3.0) 0.6 1.9 9.6 35.7 (5,4,3.0) 1.5 5.1 21.0 76.5
(2,8,1.6) 0.1 0.5 1.8 9.1 (2,8,1.6) 0.2 1.1 3.2 17.5
(2,8,2.2) 0.1 0.4 1.6 5.9 (2,8,2.2) 0.2 0.6 3.3 14.3
(2,8,3.0) 0.1 0.3 1.0 4.7 (2,8,3.0) 0.1 0.6 2.7 10.0
(3,8,1.6) 0.2 1.2 4.2 18.3 (3,8,1.6) 0.6 2.4 9.8 46.3
(3,8,2.2) 0.2 0.7 3.8 15.0 (3,8,2.2) 0.5 1.6 7.7 34.3
(3,8,3.0) 0.1 0.5 2.5 7.0 (3,8,3.0) 0.3 1.2 5.4 24.8
(4,8,1.6) 0.6 2.1 9.1 31.7 (4,8,1.6) 1.3 5.3 20.8 88.5
(4,8,2.2) 0.4 1.6 6.9 32.9 (4,8,2.2) 1.0 3.7 16.0 66.8
(4,8,3.0) 0.3 1.0 5.0 17.8 (4,8,3.0) 0.8 2.6 11.0 43.7
(5,8,1.6) 0.9 3.9 16.3 72.6 (5,8,1.6) 2.5 9.0 37.0 145.8
(5,8,2.2) 0.7 2.9 15.9 50.8 (5,8,2.2) 1.9 6.9 28.6 115.1
(5,8,3.0) 0.5 2.1 10.1 33.6 (5,8,3.0) 1.4 5.2 20.2 85.2

Table EC.17: Running Time in Seconds of the Dynamic Programming Decomposition (DEC)


