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A stream of recent research considers the practice of random price discounts (a.k.a randomized pricing) when

selling to forward-looking customers and shows that such pricing strategies can mitigate strategic customer

waiting and boost seller profit. In practice, random price discounts are often offered together with price

guarantees, in which customers are refunded the price difference if the price is lowered within a given time

window after purchase. This paper investigates the efficacy of price guarantees under randomized pricing.

To that end, we consider a model in which a firm adopts Markovian pricing and interacts with customers

over an infinite time horizon. The following results are obtained. First, while Markovian pricing allows

firms to price discriminate customers based on their monitoring costs, price guarantees further allow firms

to price discriminate customers based on their willingness to pay. Second, offering price guarantees under

Markovian pricing can help retain customers effectively by inducing high-valuation customers to purchase

early, regardless of their arrival time. Third, even with price guarantees, Markovian pricing can dominate

static pricing only when high-valuation customers are more likely to have a high monitoring cost, which

illustrates that customer composition plays a crucial role in the effectiveness of the firm’s pricing strategy.

Fourth, the optimal duration of price guarantees is closely related to customers’ lifetime duration. Finally,

perhaps surprisingly, offering price guarantees can decrease the aggregate customer surplus since the firm

offers sale prices less often under price guarantees.
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1. Introduction

A stream of recent research in operations management considers random price discounts (a.k.a

randomized pricing), where prices are drawn randomly from pre-committed distributions (Wu

et al. 2014, Moon et al. 2017, Chen et al. 2023). These papers offer several explanations for why

randomized pricing works well, often dominating non-randomized pricing strategies. As an example,

Figure 1 shows the historical prices of a robot vacuum cleaner on suning.com, a major online

retailer in China. From October 1, 2019 to January 31, 2020, the price was usually 2,500 CNY;
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Figure 1 Price of a Robot Vacuum Cleaner on Suning.com from October 1, 2019 to January 31, 2020.

however, a sale price of 2,000 CNY was occasionally offered for a short duration.

In response to price variations over time, some customers may choose to wait for a sale price even

if the current price is affordable. To mitigate such customer waiting behavior, price guarantees are

often offered in practice (Aviv et al. 2009, Netessine and Tang 2009). Price guarantees can take

many forms. A common one is the so-called posterior price guarantee, under which customers are

offered a refund of the price difference if the price is marked down within a given time window

after the purchase. In practice, the duration of price guarantees is usually finite and varies from

seller to seller or even from product to product for the same seller. For example, a major online

retailer in China, JD.com, specifies that its price guarantee lasts 30 days for household appliances

and 7 days for a set of products including laptops and cameras. Due to refund claims made by

customers in the event of a markdown, price guarantees can negate the power of varying prices

over time. Then, what is the effect of price guarantees on customers’ purchase behavior and firm

profits? To the best of our knowledge, the efficacy of price guarantees under randomized pricing

has not been investigated. In addition, given the variations in the duration of price guarantees, a

question naturally arises: What is the optimal duration for a price guarantee? We investigate these

issues in our work.

We consider a more general form of randomized pricing, called Markovian pricing, for a firm

interacting with customers over an infinite time horizon. Under a Markovian pricing strategy, the

firm switches between a regular price and a sale price following a continuous-time Markov chain.

The firm offers a price guarantee that lasts for a fixed amount of time to induce customers to

purchase. Customers arrive over time and differ in two dimensions: valuation (either high or low)

and price monitoring cost (or simply “monitoring cost” for short), where type I customers have a

zero monitoring cost, and type II customers have a non-zero monitoring cost. All customers are

short-lived with a lifetime that is exponentially distributed. They can choose to purchase and leave
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immediately, purchase and monitor for price refund, or wait for a better price until their lifetime

ends.

An important feature of our model is that customers have a limited and uncertain lifetime that

is exponentially distributed. That customers have a limited lifetime is implicitly assumed in all

finite-horizon models in the literature. Customer models with limited and random lifetime are

considered in the marketing literature (Bemmaor and Glady 2012, Abe 2009), albeit under different

settings. By modeling customer lifetime as a random quantity, we assume that customers cannot

predict perfectly when they might exit the market. Such a model is quite natural if we interpret

a customer’s lifetime as the duration of interest for a product. For example, a customer’s need for

a product may vanish while waiting for a sale. Her tastes might change over time and she may no

longer be interested in the product.

We formulate a customer’s decision problem as a continuous-time Markov decision process and

derive her optimal purchase decisions. Then, based on customers’ optimal responses, we analyze

the firm’s optimal Markovian pricing strategy. We find that the optimal pricing strategy, with and

without price guarantees, is either static pricing or high/low pricing with flash sales, where the firm

charges a high price all the time, except for occasional price drops. Then, we compare the firm’s

optimal pricing strategy and customers’ purchase behavior with and without price guarantees to

investigate how price guarantees affect the firm’s profit and customer welfare.

Our main results can be summarized as follows. First, without price guarantees, Markovian

pricing can price discriminate customers based on their monitoring costs: All customers with a low

monitoring cost would monitor the prices and only purchase at low prices, while those with a high

monitoring cost would purchase immediately if the current price is below their valuations. With

price guarantees, the high-valuation customers with a low monitoring cost may choose to buy at

high prices and try to take advantage of price guarantees. That is, on top of the discrimination

based on customers’ monitoring cost, price guarantees entail another type of price discrimination

based on customers’ valuation. Overall, our result establishes price guarantees as an additional

lever to boost profitability under Markovian pricing.

Second, price guarantees under Markovian pricing can help boost customer demand by retaining

short-lived customers. Without price guarantees, some customers may choose to wait for a lower

price when the price is high upon their arrival. However, these waiting customers may exit the

market before purchase when they reach the end of their lifetime. Offering a price guarantee can

induce these customers to purchase immediately at a high price, regardless of their arrival time.

This is because, by injecting randomness into the pricing strategy, the expected surplus does not
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depend on a customer’s arrival timing in case the customer chooses to take advantage of the price

guarantee.

Third, we compare Markovian pricing with static pricing and find that even with price guar-

antees, high/low pricing with flash sales can dominate static pricing only when high-valuation

customers are more likely to have a high monitoring cost. Substantial variations in customers’

monitoring costs are established empirically in Moon et al. (2017), albeit in a different setup. It

is plausible that high-valuation customers are more likely to have a high monitoring cost, given

that high-valuation customers may also assign a higher value to their time and effort. Our research

therefore offers an explanation for the widespread use of high/low randomized pricing in online

retail.

Interestingly, the optimal duration for the price guarantee is closely related to customers’ lifetime

duration. On the one hand, as the guarantee duration decreases, it is less likely for customers to

claim the refund, which increases the firm’s profit. On the other hand, as the guarantee duration

decreases, it becomes less appealing to customers and results in fewer customers to purchase at a

high price. The optimal guarantee duration balances the two counteracting forces. In practice, one

would expect that customers have different lifetime duration for different products. Our results

therefore offer an explanation for the observed heterogeneity in guarantee duration for different

products in practice.

Finally, offering price guarantees can either increase or decrease the aggregate customer surplus,

which is somewhat surprising because price guarantees are often viewed favorably by customers. We

find that when the firm switches from a high static price to high/low pricing with price guarantees,

the aggregate customer surplus increases and thus a win-win outcome occurs. However, when the

firm switches from either a low static price or high/low pricing without price guarantees to high/low

pricing with price guarantees, the aggregate customer surplus is reduced, because price guarantees

allow the firm to better discriminate customers and thus charge higher effective prices.

The remainder of the paper is organized as follows. Section 2 reviews the related literature.

Section 3 introduces the model setup and describes the Markovian pricing strategy with price guar-

antees. Section 4 analyzes customers’ decision problem with price guarantees. Based on customers’

strategy, Section 5 analyzes the firm’s decision problem with price guarantees. Section 6 first derives

the optimal Markovian pricing strategy without price guarantees and then investigates the impact

of price guarantees by comparing the Markovian pricing strategy and customer behavior with and

without price guarantees. Section 7 considers an alternative assumption on customers’ monitoring

behavior as a robustness check for our main results. Section 8 concludes. Technical proofs and

supplemental materials are relegated to e-companion and online supplement.
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2. Literature Review

Our literature review focuses on several closely related streams: dynamic pricing focusing on ran-

domized/Markovian pricing, revenue management with strategic customers, and price guarantees.

Unlike much of the literature on dynamic pricing (Elmaghraby and Keskinocak 2003, Caldentey

and Vulcano 2007, Elmaghraby et al. 2008, Board and Skrzypacz 2016), our model does not incor-

porate inventory considerations and the demand is deterministic. Furthermore, we consider Marko-

vian pricing in an infinite-horizon setting and the form of the optimal pricing strategy is also quite

different from literature. A salient feature of our optimal pricing strategy is that it may involve

flash sales from time to time, which do not occur under inventory-driven dynamic pricing. One

exception is the recent work of Dilmé and Li (2019), where flash sales are used to clear inventory

early and charge higher prices later. Their driver of flash sales is completely different from ours

and they do not consider price guarantees.

When customers are forward-looking, firms may vary prices over time to price discriminate them.

In response, customers may choose to time their purchases. Such customers are called strategic

customers and have been studied extensively (Besanko and Winston 1990, Su 2007, Liu and van

Ryzin 2008, Besbes and Lobel 2015, Wang and Sahin 2018). More recent literature considers many

variations of such customer behavior. As an example, a stream of literature considers the so-

called patient customers who do not know the price path and purchase as soon as the price falls

below their valuation (Liu and Cooper 2015, Lobel 2019, Zhang and Jasin 2022). It is shown that

the optimal price path is non-monotonic and may involve price cycles. Such patient customers

are closely related to the ones considered in Conlisk et al. (1984), who show that the optimal

price path involves price cycles where the firm holds periodic sales. All the aforementioned papers

consider finite-horizon models, where the optimal pricing strategy is deterministic. Implicitly, they

all assume that customers have a finite, limited lifetime.

Injecting randomness in pricing is shown to be effective under certain conditions to mitigate

strategic customer behavior. Wu et al. (2014) analyze the impact of randomized pricing on a firm’s

profitability, where high-valuation customers wait for at most one period and low-valuation cus-

tomers wait for multiple periods. Using data from a North American specialty retail brand, Moon

et al. (2017) empirically show that a randomized markdown policy performs better than a contin-

gent state-dependent markdown policy. Randomized pricing and a version of the Markovian pricing

strategy were considered in Chen et al. (2023), albeit in a discrete-time model. They study the

intertemporal price discrimination effect of randomized pricing and show that randomized pricing

(weakly) dominates the optimal deterministic cyclic policy in their setup. Collectively, Wu et al.
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(2014), Moon et al. (2017), and Chen et al. (2023) establish the effectiveness and rationale for ran-

domized pricing. When price guarantees are not considered, our results closely mirror theirs, even

though our modeling framework is somewhat different. However, there are several key differences

between these papers and our work. First, the most significant difference is that all these papers

do not consider price guarantees, whereas the effectiveness of price guarantees under Markovian

pricing is our focus. Second, our customer model is somewhat different from Chen et al. (2023) and

Moon et al. (2017). We consider the price monitoring cost, instead of the waiting cost as in Chen

et al. (2023) or the opportunity cost for a visit as in Moon et al. (2017). This modeling choice

allows for more parsimonious modeling for price guarantees. In particular, the interpretation of

price monitoring cost is different from the opportunity cost for a visit in Moon et al. (2017) in which

customers need to decide how often to monitor the product. Finally, another major distinction of

our work is the consideration of a continuous time model. Note that randomized pricing in its basic

form means that the seller pre-commits to a distribution of prices. Such a pricing strategy is quite

natural in a discrete-time model that does not allow price changes within each period, but would

lead to prices bouncing around in a continuous time model. However, the Markovian pricing strat-

egy is quite natural in a continuous-time model and substantially simplifies some of the analysis

compared to a discrete-time model, such as the one in Wu et al. (2014). This analytical tractability

is crucial since it allows us to analyze the more complicated cases involving price guarantees.

There is a substantial stream of literature on price guarantees. Much of the research in market-

ing explores the underlying mechanisms of price guarantees, such as signaling (Jain and Srivas-

tava 2000, Moorthy and Winter 2006, Mamadehussene 2019), consumer reservation price boosting

(Janssen and Parakhonyak 2013), collusion facilitation (Hay 1982, Salop 1986, Hviid and Shaffer

1999), and price discrimination (Png and Hirshleifer 1987, Corts 1996, Hviid and Shaffer 2012,

Janssen and Parakhonyak 2013). We refer readers to Hviid (2010) for a comprehensive review of

the price discrimination effect of price guarantees. The price guarantees in our study also facilitate

price discrimination. Little research considers the optimal guarantee duration. One exception is

Xu (2011), who studies the price guarantee duration for a monopolist that drops prices once in a

finite selling horizon. By contrast, we consider an infinite horizon model in which prices vary over

time following a continuous-time Markov chain.

Modeling work on price guarantees in the operations management literature often emphasizes the

role of inventory and demand uncertainty. Lai et al. (2010) analyze a two-period model and argue

that a posterior pricing matching policy can substantially improve the firm’s profit under certain

conditions. Huang et al. (2017) study price guarantees when customers are boundedly rational.
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Levin et al. (2007) incorporate price guarantees into a finite-horizon revenue management problem

with limited inventory. Nalca et al. (2013) analyze a concurrent price guarantee mechanism that

is contingent on the verification of product availability at the competitor’s location. Our study

differs from this line of research in four aspects. First, none of the aforementioned papers deal

with short-lived customers. Second, inventory and demand uncertainty are not considered in our

model. Third, none of these papers study the optimal duration of price guarantees. Finally, we

consider an infinite-horizon continuous-time model, whereas most existing work considers finite-

horizon discrete-time models. To summarize, we study the impact of price guarantees in the context

of Markovian pricing, which has never been studied in the literature.

3. Model Setup

3.1 Market Composition

We consider a monopolist selling a product to a market over an infinite time horizon. Without loss

of generality, we assume that the unit production cost is zero. We considered a fluid model where

infinitesimal customers flow in at a fixed rate of one per unit time. Customers are short-lived with

a lifetime that is exponentially distributed with rate λ.1 Customers’ lifetime can be interpreted as

their interest in the product, the randomness of which is determined by many factors. For example,

a customer’s taste or preference might change while waiting to buy a product, or another product

is purchased as a substitute elsewhere. Note that customers may not be able to perfectly predict

when they will lose interest in a product. In marketing literature, it is quite common to model

customers’ lifetime as a random variable, although in a different model setup (Bemmaor and Glady

2012, Abe 2009).

Upon arrival, a customer observes the current price and decides whether to purchase immediately.

When a price guarantee is not offered, the customer leaves the market if she decides to purchase

immediately. She can also choose to wait in the market and monitor the price in the hope of a

price drop until her lifetime ends. When a price guarantee is offered, the customer may also choose

to purchase immediately and then monitor the price for price refund.

Customers differ in their product valuation. A proportion α of customers are high-valuation

customers with valuation VH , whereas the rest are low-valuation customers with valuation VL <VH .

1 The exponential lifetime assumption is made for tractability. It is a reasonable assumption when the seller does
not monitor customers constantly; under a non-exponential lifetime distribution, the seller needs to know where each
customer is in her lifetime cycle, which is nearly impossible in practice. There are many precedence in the operations
literature on this type of approximation, such as the exponential arrival and service times in the queueing literature.
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Figure 2 The Four Customer Segments.

In case a customer chooses to wait and monitor the price, a monitoring cost is incurred over time.2

Different customers may have different monitoring costs. Given that automated price monitoring

services (e.g., email notifications) can make it almost costless for some customers to learn about

price changes in practice, we assume that a proportion β are type I customers with a zero monitoring

cost, while the rest are type II customers with a monitoring cost c > 0. Note that customers differ

in two dimensions: product valuation and monitoring cost. To model the correlation between these

two dimensions, we assume that a proportion γ of all customers are high-valuation type I customers.

Consequently, α− γ (β − γ, 1− α− β + γ) proportion are high-valuation type II (low-valuation

type I, low-valuation type II) customers. Figure 2 illustrates the four customer segments. It can be

shown that the market model described here can incorporate arbitrary correlations between the

two dimensions. Let ρ denote the correlation between having a high valuation and being type I.

Then, ρ= γ−αβ√
α(1−α)

√
β(1−β)

. When γ = αβ, the two customer characteristics are independent. When

γ > (<)αβ, the two characteristics are positively (negatively) correlated.

3.2 Markovian Pricing Strategy

We assume that the firm adopts Markovian pricing, special cases of which include static pricing,

randomized pricing, and high/low pricing. A Markovian pricing strategy can be described as fol-

lows. Suppose the price process {r(t) : t ≥ 0} follows a regular continuous-time Markov chain. A

continuous-time Markov chain is said to be regular if, with probability one, the number of tran-

sitions in any finite length of time is finite (Ross 1996). The price process consists of two prices,

rH and rL, which are chosen by the firm. If the price is rH , the time before switching to the price

rL follows an exponential distribution with rate µH . Similarly, if the price is rL, the time before

2 Alternatively, one may consider a model with customer waiting cost. An undesirable consequence of a waiting cost
model is that it requires a separate assumption on customers’ price monitoring behavior after purchase when a price
guarantee is offered (customers who already purchased are not waiting anymore). In contrast, we are able to use
a single parameter (the price monitoring cost c) to capture consumers’ price monitoring behavior before and after
purchase, resulting in a more parsimonious model.
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switching to the price rH follows an exponential distribution with rate µL. For i, j ∈ {H,L}, let

Pij(t) denote the probability that the Markov chain, presently in state i, will be in state j after an

additional time t. Then, it can be shown that (Ross 1996)

PHH(t) = 1−PHL(t) =
µL

µH +µL
+

µH
µH +µL

e−(µH+µL)t,

PLL(t) = 1−PLH(t) =
µH

µH +µL
+

µL
µH +µL

e−(µH+µL)t.

With a slight abuse of the notation, let Pi be the limiting probability of state i∈ {H,L} as t→∞.

Then,

PH =
µL

µH +µL
, PL =

µH
µH +µL

. (1)

Here, Pi can also be interpreted as the probability that the price is ri for i ∈ {H,L}. We also

assume that a cost m is incurred each time the price changes. Price change cost is well recognized

in the marketing and economics literature; see, e.g., Slade (1998), Levy et al. (2010), and related

references. There is also a strand of the operations management literature that studies dynamic

pricing with price change cost; see, e.g., Çelik et al. (2009) and Netessine (2006). In online retail,

price changes can be made simply by changing the display on a webpage, the nominal cost of which

is minimal. Even in this situation, however, frequent price changes are rarely desirable because

they may create customer confusion and increase customers’ search costs. Therefore, there is often

a significant implicit cost of price changes. The firm’s objective is to maximize the long-run average

profit per customer per unit time.

Several commonly used pricing strategies can be viewed as special cases of Markovian pricing:

• Static pricing: The firm charges a fixed price over time. Static pricing is a special case of

Markovian pricing where rH = rL.

• Randomized pricing: The firm chooses either high or low prices with a given probability at

each moment. Let the probabilities of high and low prices be φ and 1−φ for any t, respectively.

Randomized pricing can be viewed as a special case of Markovian pricing where

PHH(t) = 1−PHL(t) = φ, PLL(t) = 1−PLH(t) = 1−φ, PH = φ, PL = 1−φ.

Note that the transition probabilities for randomized pricing do not depend on t. Randomized

pricing as specified above can be obtained as a limit of Markovian pricing by setting µL = φ
1−φµH

and taking µH to infinity. That is, the transitions between prices are instantaneous with infinite

transition rates; however, some transitions occur more frequently than others. Furthermore, the

Markov chain associated with randomized pricing is not regular because the firm can switch prices

at any moment and there is no guarantee that the number of price changes is finite within a finite

length of time.
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• High/low pricing with flash sales: The firm usually offers high prices but chooses to reduce

the price occasionally. This pricing strategy can be viewed as a special case of Markovian pricing

where µH is finite and µL approaches infinity.

3.3 Price Guarantees under the Markovian Pricing Strategy

Under Markovian pricing, high-valuation customers may choose to wait for the sale price, hurting

the firm’s profit. To encourage customers to purchase at the regular price, the firm can offer a

price guarantee so that customers who purchase at a high price are refunded the price difference

in case of a price drop within a time window after purchase. Of course, customers need to monitor

the price after purchase in order to obtain a refund. Specifically, we assume that the firm refunds

customers the price difference if a lower price is offered within T periods after purchase, where T

is a constant chosen by the firm. Such price guarantees are often called posterior price matching

in the literature and are widely observed in practice.

If the pricing strategy (price levels and switching rates) is fixed, a price guarantee should benefit

customers, as they may receive refunds in the event of a price drop. However, because customers

are more likely to purchase at the regular price when a price guarantee is offered, the firm has

incentives to alter the pricing strategy. The overall effect of offering price guarantees on the firm and

customers can be rather complicated due to these strategic interactions. Therefore, the objective of

this work is to investigate the impact of price guarantees on the firm’s profit and customer welfare

in the context of Markovian pricing strategy.

4. Customers’ Decision Problem

To explore the effects of price guarantees on the firm’s pricing strategy and customer behavior, we

first analyze customers’ optimal purchase strategy under Markovian pricing.

We analyze the optimal purchase strategy for a type II customer with valuation v ∈ {VH , VL}

and monitoring cost c. Note that a type I customer’s optimal purchase strategy can be obtained

by taking c = 0. We assume that the firm uses a Markovian pricing strategy with parameters

(rH , rL, µH , µL, T ), where rL ≤ rH . As a tie-breaking rule, we assume that the customer always

purchases if she is indifferent between purchasing and not purchasing.

Upon arrival, the customer observes the current price r ∈ {rH , rL}. If the observed price is rL

and the customer’s valuation is above rL, the customer purchases immediately and leaves. If the

observed price is rH , then the customer has four options. First, she can leave immediately without

a purchase. Second, she can purchase immediately and leave. Third, she can purchase immediately

and then monitor the price. A decision that the customer needs to make is when to stop monitoring
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for price refund. Lemma 1 below shows that it is optimal for the customer to keep monitoring until

the price guarantee expires/applies. Hence, if the price drops before the price guarantee expires,

she will be refunded the price difference rH − rL. Finally, she can monitor the price and purchase

only when there is a price drop. Note that it is possible that she does not make a purchase if the

price does not drop before her lifetime ends (i.e., she loses interest in the product).

The customer’s decision problem can be formulated as a continuous-time Markov decision pro-

cess. The state is the current price r. We consider the discrete-time Markov chain embedded in the

continuous-time semi-Markov process and apply uniformization by taking the maximum transition

rate to be ν = λ+ µH + µL (Puterman 1994). Uniformization is a well-known technique used to

formulate continuous-time dynamic programs and simplify the analysis of the resulting dynamic

programming model. The transition rates in different states for a continuous-time Markov chain

usually differ. For the continuous-time Markov chain we consider here, there are two possible tran-

sitions in state rL: either the price changes from rL to rH (with rate µL) or the customer leaves

with rate λ. Hence, the total transition rate is µL + λ. Similarly, when the state is rH , the total

transition rate is µH + λ. The key idea of uniformization is to add fictitious transitions such that

the total transition rate is the same in both states. Here, by taking the total transition rate ν, we

add fictitious transitions with rate µH in state rL and rate µL in state rH . Note that these fictitious

transitions return to the same states.

Before writing down the decision problem for the customer as a dynamic program, we first derive

the expected surplus if the customer chooses to purchase immediately at price rH and then monitor

the price, as shown in the following lemma.

Lemma 1. If the customer who purchased at price rH chooses to monitor the price, then it is

optimal for her to keep monitoring until the price guarantee expires/applies, and her expected

surplus is v− rH + (1− e−µHT )(rH − rL− c
µH

).

Lemma 1 shows that if the customer chooses to monitor the price after purchase, then it is

optimal for her to keep monitoring until the price guarantee expires/applies, instead of stopping

earlier. The main reason is that at any given time point during the monitoring, the expected benefit

of monitoring until the end dominates the expected cost.

Let G(·) be the value function, which denotes the maximum surplus earned by the customer.

Then, the dynamic program can be formulated as

G(rH) = max

{
v− rH , v− rH + (1− e−µHT )(rH − rL−

c

µH
),
µL
ν
G(rH) +

µH
ν
G(rL)− c

ν
,0

}
, (2)

G(rL) = max
{
v− rL,

µL
ν
G(rH) +

µH
ν
G(rL)− c

ν
,0
}
. (3)
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The right-hand side of equation (2) is the maximum of four terms, corresponding to purchasing

and then leaving, purchasing and monitoring for a refund, waiting and monitoring for a price drop,

and leaving immediately without a purchase. If the customer purchases immediately and leaves,

she obtains a surplus v−rH . If the customer purchases and then monitors the price, she obtains an

expected surplus v−rH +(1−e−µHT )(rH−rL− c
µH

); see Lemma 1. If the customer chooses to wait,

the state becomes rL at the next transition with probability µH/ν, whereas the next transition

is a fictitious transition back to state rH with probability µL/ν. These fictitious transitions are

the result of uniformization. Note that the customer may also lose interest in the product while

waiting, the probability of which is λ/ν and the surplus of which is zero. Thus, the term λ/ν · 0

is not necessary. Because the customer incurs a monitoring cost of c per unit time and the time

until the next transition has a mean 1/ν, the expected monitoring cost until the next transition

is c/ν. Therefore, the expected surplus of waiting for a sale is µL
ν
G(rH) + µH

ν
G(rL)− c

ν
. Of course,

the customer also has the option to leave immediately without a purchase with zero surplus, which

is reflected in the last term within the maximization.

Equation (3) can be explained similarly. When r= rL, the price guarantee is never used. Hence,

there are only three terms in equation (3). Intuitively, if v≥ rL, the customer will always purchase

immediately and equation (3) can be simplified to G(rL) = v− rL.

Lemmas 2 and 3 provide the optimal solution to the dynamic program in equations (2) and (3)

and characterize the customer’s optimal purchase strategy for a type II customer with parameters

(v, c). The two lemmas consider cases with a high and a low price monitoring cost, respectively.

Lemma 2 (Optimal purchase decisions when the price monitoring cost is high). Consider

a type II customer with parameters (v, c) where c > µH(rH− rL). The optimal solution to equations

(2)–(3) and the optimal purchase strategy of the customer are as follows:

(a) If v < rL, then G(rH) =G(rL) = 0 and the customer never purchases;

(b) If rL ≤ v < rH , then G(rH) = 0, G(rL) = v − rL, and the customer purchases upon arrival

when the price is rL, but leaves immediately without a purchase when the price is rH ;

(c) If v ≥ rH , then G(rH) = v − rH and G(rL) = v − rL. The customer purchases immediately

upon arrival.

Lemma 3 (Optimal purchase decisions when the price monitoring cost is low). Consider

the purchase decisions for a type II customer with parameters (v, c) where c≤ µH(rH − rL). The

optimal solution to equations (2)–(3) and the optimal purchase decision are given as follows:

(a) If v < rL, then G(rH) =G(rL) = 0; the customer never purchases and the price guarantee is

never used;
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(b) If rL ≤ v < rL + c
µH

, then G(rH) = 0, G(rL) = v − rL; the customer purchases immediately

upon arrival at the price rL, but leaves without a purchase if the price is rH . The price guarantee

is never used;

(c) If rL + c
µH
≤ v <

(λ+µH )e−µHT (rH−rL− c
µH

)

λ
+ rL + c

µH
, then

G(rH) =
µH(v− rL)− c

λ+µH
, G(rL) = v− rL.

The customer purchases immediately upon arrival when the price is rL. When the price is rH , the

customer would wait for the price rL until she leaves the market. The price guarantee is never used;

(d) If v≥
(λ+µH )e−µHT (rH−rL− c

µH
)

λ
+ rL + c

µH
, then

G(rH) = v− rH + (1− e−µHT )(rH − rL−
c

µH
), G(rL) = v− rL.

The customer purchases immediately upon arrival. If the purchase is made at the price rH , she

would keep monitoring the price until the price guarantee is applied/expired.

(a)When the monitoring cost is high (b)When the monitoring cost is low

Figure 3 A Type II Customer’s Optimal Purchase Strategy with Price Guarantees.

Lemmas 2 and 3 show that a type II customer’s purchase strategy depends critically on the

magnitude of the monitoring cost. Lemma 2 characterizes a type II customer’s purchase strategy

when the monitoring cost is relatively high. The result is illustrated in Figure 3(a). In this case,

the customer either purchases immediately at the current price or leaves. Therefore, her behavior

is the same as a myopic customer. That a customer chooses not to wait and monitor the price at

a high monitoring cost is quite intuitive. Lemma 3 considers the case where the monitoring cost is

relatively low. The result is illustrated in Figure 3(b). If the customer’s valuation is below rL, she

never purchases. If her valuation is at least rL but below rL+ c
µH

, she purchases at the price rL, but

leaves at the price rH ; due to the price monitoring cost, it is not desirable to wait for a price drop if

the current price is rH . If her valuation is between rL + c
µH

and
(λ+µH )e−µHT (rH−rL− c

µH
)

λ
+ rL + c

µH
,

she only purchases at the price rL. When the price is rH , the customer would wait and monitor for

the price rL rather than purchase immediately, and thus the price guarantee does not apply. If the
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customer’s valuation is above
(λ+µH )e−µHT (rH−rL− c

µH
)

λ
+ rL + c

µH
, she would purchase immediately.

Moreover, if the purchase is made at the price rH , then she would keep monitoring the price until

the price guarantee is applied/expired.

Observe that the upper end of the range in Lemma 3(c),
(λ+µH )e−µHT (rH−rL− c

µH
)

λ
+ rL+ c

µH
, may

be above rH . For example, when there is no price guarantees (i.e., T = 0), the upper end reduces

to rH + µH (rH−rL)−c
λ

, which is greater than rH because c≤ µH(rH − rL); another example is when

there is an intermediate expiration term for price guarantees such that e−µHT ≥ λ
λ+µH

, in which

case the upper end is also greater than rH . This means that a type II customer with valuation

between rH and
(λ+µH )e−µHT (rH−rL− c

µH
)

λ
+ rL + c

µH
may eventually leave without a purchase even

though the price rH is acceptable to her. One may wonder about the rationale behind this result.

In our model, a customer calculates and compares the expected utility of each option when making

a decision. Even if the current price is below their valuation, she may still choose to wait for a

price drop due to a higher expected utility. However, during the waiting, she may lose interest

in the product and thus exit the market. Customers cannot predict precisely when they may lose

interest and exit the market. In our model, the waiting occurs because customers are not sure

whether the price drop or the transition out of the market happens first. To our knowledge, that

customers may not purchase even if the price is below their valuation is quite common in the

literature on strategic customer behavior (Su 2007, Liu and van Ryzin 2008). In fact, whenever

customers engage in strategic waiting, they risk the opportunity to purchase even if the price is

below their willingness to pay.

For a relatively small T such that
(λ+µH )e−µHT (rH−rL− c

µH
)

λ
+ rL + c

µH
≥ rH , Lemma 3(d) shows

that a type II customer chooses to purchase at price rH only when her valuation is substantially

above rH . If a type II customer’s valuation is only slightly above rH , she may prefer to wait in the

market for a price drop. Such customer behavior is consistent with the so-called deal-proneness

(Fortin 2000). Note that customers in our model are still rational in the sense that they take into

account the possibility of leaving without a purchase when they choose to wait. On the other hand,

for a large T such that
(λ+µH )e−µHT (rH−rL− c

µH
)

λ
+ rL + c

µH
< rH , a type II customer may choose

to purchase at price rH even if her valuation is below rH . This is because when the firm offers a

price guarantee with a long duration, there is a high chance for a purchased customer to receive

the price refund, encouraging those with valuations below rH to purchase at the high price. When

c= 0, Part (b) no longer exists, and a type I customer’s behavior follows Parts (a), (c), and (d).
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5. The Optimal Markovian Pricing Strategy with Price Guarantees

This section analyzes the firm’s optimal Markovian pricing strategy with price guarantees. Given

customers’ optimal purchase decisions, the firm optimizes its Markovian pricing strategy by choos-

ing the parameters rH , rL, µH , µL, and T . Note that based on the customer’s decision, we can

characterize the revenue contribution of a generic customer in different cases. Therefore, for any

given pricing strategy, the revenue contribution from each of the four customer segments can be

determined accordingly. Summing up these revenue contributions gives the firm’s expected profit

per customer per unit time. The optimal parameters balance the revenue received from all four

customer segments.

5.1 A Low Monitoring Cost

Recall that our analysis in Section 4 indicates that type II customers monitor the price after they

purchase at the high price if the monitoring cost is low, and do not monitor otherwise; type I

customers always monitor after purchase at the high price because their monitoring cost is zero.

We first analyze the firm’s problem when the monitoring cost for type II customers is low. The

result is summarized in Proposition 1.

Proposition 1. If the monitoring cost c is low (i.e., c≤ µH(rH−rL)) such that type II customers

who purchase at the high price choose to monitor the price after purchase, then high/low pricing

with price guarantees cannot improve firm profit, compared to static pricing.

Proposition 1 considers the situation where the monitor cost is low such that type II customers

who purchase at the high price choose to monitor the price after purchase. Thus, high-valuation type

I customers behave the same as high-valuation type II customers and pay the same price. Therefore,

the price guarantee does not differentiate these two customer segments. However, offering price

guarantees still enables Markovian pricing to discriminate customers based on their valuations;

but such discrimination does not benefit the firm. To understand this result, note that if the price

does (does not) switch to VL before the price guarantee expires, the high-valuation customers who

take advantage of price guarantees would pay an effective price VL (VH at most), whereas the

low-valuation customers pay an effective price VL (do not purchase). Consequently, the aggregate

revenue is always dominated by VL or αVH , which is the revenue under static pricing at VL and

VH , respectively. Hence, high/low pricing with price guarantees does not benefit the firm in this

case.
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5.2 A High Monitoring Cost

We then analyze the firm’s pricing problem when the monitoring cost is high (c > µH(rH − rL))

such that type II customers do not monitor the price after they make a purchase at the price rH .

That is, only type I customers take advantage of the price guarantee. The analysis in this case

is somewhat complicated. On the one hand, the firm needs to decide on the duration of price

guarantees T and the switch rates µH and µL to effectively manage the behavior of those who

take advantage of price guarantees. On the other hand, inevitably, the decisions of T , µH , and µL

also affect the purchase probability and thus revenue contribution of other customer segments, i.e.,

high-valuation type II and low-valuation type I. Therefore, the overall effect of price guarantees is

not clear due to these interactions. The result is summarized in Proposition 2 below. To simplify

notations, let

K = βVL− γVH . (4)

Note that K can be interpreted as the revenue difference between serving all type I customers at

the price VL and serving only high-valuation type I customers at the price VH . Recall that m is

the cost of each price change.

Proposition 2 (The optimal Markovian pricing strategy for a high monitoring cost).

Suppose the monitoring cost c is high (i.e., c > µH(rH − rL)) such that type II customers do not

monitor the price after they make a purchase at the price rH . If K ≤ 2mλ, then the firm’s opti-

mal pricing strategy reduces to that without price guarantees. If K > 2mλ, there are three possible

outcomes for the firm’s optimal pricing strategy:

(i) Static pricing at VH. The firm prices at VH . All high-valuation customers purchase imme-

diately and all low-valuation customers leave without a purchase. The profit per unit time is αVH ;

(ii) Static pricing at VL. The firm prices at VL. All customers purchase immediately. The

profit per unit time is VL;

(iii) High/low pricing with price guarantees. Only if

c > λ

(√
K

2mλ
− 1

)
(VH −VL), (5)

the firm uses a Markovian pricing strategy with price guarantees where

rB,∗H = VH , rB,∗L = VL, T ∗ =
ln
√

K
2mλ

λ
(√

K
2mλ
− 1
) , µB,∗H = λ

(√
K

2mλ
− 1

)
, µB,∗L =∞.

The profit per unit time is

ΦB,∗ = (α− γ)VH + (β− γ)

(
1−

√
2mλ

K

)
VL + γ

[(
1−

√
2mλ

K

)
VL +

√
2mλ

K
VH

]
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− 2mλ

(√
K

2mλ
− 1

)
. (6)

All high-valuation customers purchase immediately at both prices; in particular, high-valuation type

I customers try to take advantage of price guarantees by monitoring the price after purchase, while

high-valuation type II customers leave immediately after purchase; low-valuation type I customers

either purchase immediately at price VL or wait for price VL; and low-valuation type II customers

purchases immediately at VL and leave without a purchase at VH .

Proposition 2 characterizes the firm’s optimal pricing strategies with price guarantees when the

monitoring cost is relatively high such that type II customers do not monitor after they make a

purchase at the high price. If γVH is relatively large, then the refund amount claimed by high-

valuation type I customers who take advantage of price guarantees would be significant. As a result,

when K ≤ 2mλ, the firm does not offer price guarantees and the pricing strategy is the same as

in Proposition 4. Therefore, we focus on the case K > 2mλ. Proposition 2 shows that the optimal

pricing strategy is either static pricing or high/low pricing with flash sales. In static pricing, the

firm sets the price at either VH or VL with no price guarantees, and the corresponding profit is

αVH or VL. The high/low pricing strategy always charges a high price VH , except for occasional

price drops to VL. The optimal pricing strategy can be obtained by comparing the profits in the

three cases.3

The first three terms on the right-hand side of Equation (6) represent the revenues from high-

valuation type II customers, low-valuation type I customers, and high-valuation type I customers,

respectively. Because high-valuation type II customers purchase immediately upon arrival and

leave, they pay a price VH with a purchase probability one (as VL is rarely offered). Low-valuation

type I customers either purchase immediately at the price VL or wait for the price VL. They pay

a price VL with a purchase probability µH
µH+λ

= 1−
√

2mλ
K

, where µH
µH+λ

is also the probability that

the price drops to VL before customers’ lifetime ends. High-valuation type I customers purchase

immediately at both prices and monitor the price if the purchase is made at the high price to take

advantage of the price guarantee. Because the low price is only offered occasionally, the revenue

contribution at the low price is negligible. Suppose the purchase is made at the high price. Note

that e−µHT
∗

is the probability that the price guarantee expires before a sale is offered, in which

3 If K > 2mλ and condition (5) do not hold, then the high/low pricing is dominated by static pricing at either VH
or VL. However, K > 2mλ and condition (5) are necessary rather than sufficient conditions, because we did not
compare ΦB,∗ (the profit of high/low pricing) with max{VL, αVH} (the profit of static pricing). We can establish the
exact conditions under which ΦB,∗ ≥max{VL, αVH}, allowing us to state sufficient conditions for the firm to adopt a
high/low pricing strategy. We choose not to state the sufficient conditions because they are long and tedious, although
not difficult to derive.
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case these customers pay a price VH . With probability 1− e−µHT∗
, a sale is offered before the price

guarantee expires, in which case these customers obtain a refund VH − VL, and the effective price

paid is VL. Therefore, the expected price paid by high-valuation type I customers is

e−µHT
∗
VH + (1− e−µHT

∗
)VL =

(
1−

√
2mλ

K

)
VL +

√
2mλ

K
VH .

The switching rate µB,∗H characterizes the frequency of a markdown under the high/low pricing

strategy. A larger µB,∗H implies that the sale price is offered more frequently. We make several

observations. First, µB,∗H decreases in γVH . This can be explained as follows. Because of the existence

of price guarantees, high-valuation type I customers (who purchase only at the low price without

price guarantees) purchase immediately at the high price and then keep monitoring with the hope

of receiving a refund in the event of a price drop. Recall that γ is the proportion of high-valuation

type I customers and VH is the initial price they paid in the presence of price guarantees. Therefore,

the larger the γVH , the less frequently the firm should offer the sale price to avoid the loss from

the refund claimed by this customer segment. Second, µB,∗H decreases in the price change cost m.

The higher m, the less often the firm should offer the sale price. Finally, it is not immediately

clear how µB,∗H changes with respect to λ, the rate of customers’ lifetime distribution. Intuitively,

as λ increases, customers wait in the market for a shorter duration; hence, the firm should offer

the sale price more often to collect profit from low-valuation type I customers who only purchase

at the low price. On the other hand, there is a cost associated with each price change. The more

frequently the price changes, the more costs are incurred for the firm. Therefore, how µB,∗H changes

with respect to λ depends on the relative magnitude of the two counteracting forces.

Interestingly, we show that the optimal guarantee duration is set such that the probability of

getting the refund (1− e−µHT∗
) is equal to the probability that the price switches to rL before the

customer’s lifetime ends ( µH
λ+µH

). In other words, the optimal guarantee duration is closely related

to the customers’ expected lifetime. This optimal guarantee duration balances two counteracting

forces. On the one hand, as the guarantee duration decreases, it is less likely for customers to

claim the refund, which increases the firm’s profit. On the other hand, as the guarantee duration

decreases, it becomes less appealing to customers and results in fewer customers to purchase at

a high price. Intuitively, customers are more “patient” when their lifetime duration increases, so

they are more willing to wait for a sale rather than purchase at the high price, rendering the price

guarantee unused. Therefore, in order to induce customers to purchase at a high price, the firm

has to offer a more attractive price guarantee with a longer duration. In practice, one would expect

that customers have different lifetime durations for different products. Therefore, this result may
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explain the variations in the duration of price guarantees for different products. In particular, it

implies that price guarantees should be longer for products with a longer customer lifetime. Indeed,

one often observes a long price guarantee duration for durable products (such as furniture and

mattresses), while the price guarantee for less durable products (such as electronics) usually lasts

for a much shorter time.

5.3 Negative Correlation

High/low pricing with price guarantees can be beneficial to the firm because it allows the firm

to discriminate customers based on their monitoring cost and valuation, whereas static pricing

discriminates customers only based on their valuation. Compared with static pricing at VH where all

high-valuation customers purchase at price VH , under the high/low pricing strategy, high-valuation

type I customers pay a lower price due to price refund. On the positive side, low-valuation type I

customers, who do not purchase under static pricing at VH , purchase under the high/low pricing

strategy. Therefore, high/low pricing dominates static pricing at VH only when there is a relatively

small (large) fraction of high-valuation (low-valuation) type I customers. Compared with static

pricing at VL where all customers purchase at price VL, under the high/low pricing strategy, low-

valuation type II customers do not purchase given that the price VL is rarely offered. On the

positive side, high-valuation type II customers purchase at price VH . Therefore, high/low pricing

dominates static pricing at VL only when there is a relatively small (large) fraction of low-valuation

(high-valuation) type II customers. Indeed, as shown in Proposition 3 below, high/low pricing is

only profitable when the correlation coefficient ρ is negative, which means that the high-valuation

customers tend to have a higher monitoring cost and the low-valuation customers tend to have a

lower monitoring cost.

Proposition 3. If γ ≥ αβ, then the high/low pricing strategy with price guarantees is no more

profitable than static pricing.

To help explain Proposition 3, Figure 4 illustrates the optimal market outcomes when α= β =

0.5. Here, c= 0.1, m= 0.1, VH = 1, and we vary VL from 0 to 1 and λ from 0 to 0.15. The three

sub-figures correspond to the three levels of correlation between the valuation and monitoring cost

among the customer population: 0 (no correlation), -0.5 (moderately negative correlation), and

-0.9 (highly negative correlation). The horizontal axis is VL
VH

and the vertical axis is λ. The ratio VL
VH

can be interpreted as a measure of valuation homogeneity; a higher ratio indicates higher valuation

homogeneity. Figure 4(a) shows that when the correlation coefficient ρ is zero, the firm does not

benefit from high/low pricing. Instead, it serves either the entire market with a low price (when VL
VH
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(a)ρ= 0 (b)ρ=−0.5 (c)ρ=−0.9

Figure 4 The Firm’s Optimal Pricing Strategy with Price Guarantees for A High Monitoring Cost.

is high) or only the high-valuation segments (when VL
VH

is low). Figure 4(b) shows that when the

correlation coefficient ρ is moderately negative at -0.5, there is an intermediate range of valuation

homogeneity VL
VH

where high/low pricing is optimal. Figure 4(c) shows that when the correlation

coefficient ρ becomes highly negative at -0.9, the firm is even more likely to offer high/low pricing.

According to condition (5), the threshold on the monitoring cost varies with VL and λ; therefore,

the region where high-low pricing is optimal has an irregular shape.

6. The Effects of Price Guarantees

This section explores the effects of price guarantees on the firm’s profit and customer welfare.

To that end, Section 6.1 derives the optimal Markovian pricing without price guarantees, which

will serve as a benchmark. Section 6.2 compares the optimal Markovian pricing with and without

price guarantees to investigate how price guarantees affect the firm’s profit and pricing strategy.

Section 6.3 discusses the effects on customer surplus and social welfare.

6.1 The Optimal Markovian Pricing Strategy without Price Guarantees

We first discuss customers’ optimal purchase strategy without price guarantees. Customers’ optimal

purchase strategy can be obtained straightforwardly by taking T = 0 in Lemmas 2 and 3. We choose

not to repeat the result here.

Then, we analyze the firm’s optimal Markovian pricing strategy without price guarantees. Sim-

ilar to Proposition 1, we can show that if the monitoring cost c is low enough such that a type II

customer behaves as stated in Lemma 3 (with T = 0), then the high/low pricing strategy is domi-

nated by static pricing.4 Hereafter, we focus on the case with a high monitoring cost. Moreover, we

restrict our attention to the price pair (rH , rL) where VH ≥ rH , because customers never purchase

4 This result is summarized as Lemma E.5 and relegated to Section E.2 of the e-companion.
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at rH >VH . It can be shown that it is never optimal to charge a low price rL different from VL and

VL − c
µH

. In the end, it turns out that the firm’s profit when rL = VL − c
µH

is always lower than

static pricing at either VH or VL. Proposition 4 characterizes the firm’s optimal pricing strategy

without price guarantees.

Proposition 4 (The optimal Markovian pricing strategy without price guarantees). Suppose

the monitoring cost c is high (i.e., c > µH(rH − rL)) such that type II customers never choose

to wait and monitor at the high price. There are three possible outcomes for the firm’s optimal

Markovian pricing strategy:

(i) Static pricing at VH. The firm prices at VH . All high-valuation customers purchase imme-

diately and all low-valuation customers leave without a purchase. The profit per unit time is αVH ;

(ii) Static pricing at VL. The firm prices at VL. All customers purchase immediately. The

profit per unit time is VL;

(iii) High/low pricing with flash sales. Only if

βVL > 2mλ, (7)

c > λ

(√
βVL
2mλ

− 1

)
(VH −VL), (8)

the firm uses a Markovian pricing strategy where

r∗H = VH , r∗L = VL, µ∗
H = λ

(√
βVL
2mλ

− 1

)
, µ∗

L =∞.

The profit per unit time is

Φ∗ = (α− γ)VH +β

(
1−

√
2mλ

βVL

)
VL− 2mλ

(√
βVL
2mλ

− 1

)
. (9)

All type I customers either purchase immediately at the price VL or wait for the price VL; high-

valuation type II customers purchase immediately at both prices and leave; and low-valuation type

II customers purchase at the price VL but leave without a purchase at the price VH .

Proposition 4 shows that the optimal pricing strategy without price guarantees is still either

static pricing or high/low pricing with flash sales. Under high/low pricing, all type I customers

either purchase immediately at price VL or wait for price VL, so they pay a price VL with a purchase

probability µH
µH+λ

= 1−
√

2mλ
βVL

, where µH
µH+λ

is also the probability that the price drops to VL before

customers’ lifetime ends. High-valuation type II customers purchase immediately at both prices

and leave; as VL is rarely offered, they pay a price VH with a purchase probability one. Low-

valuation type II customers purchase at VL but leave without a purchase at VH ; as VL is rarely
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offered, this segment of customers does not contribute revenue to the firm. Summing up the revenue

contribution from each segment of customers gives the firm’s profit in Equation (9). Again, the

optimal pricing strategy can be obtained by comparing the profits in the three cases.

Note that high/low pricing is offered only when conditions (7) and (8) hold. Condition (7)

requires a large value of βVL (which is the potential revenue contribution from type I customers

who wait for sale prices); it is not worthwhile to offer sales prices otherwise due to price change

costs. Condition (8) can be equivalently stated as c > µ∗
H(VH−VL). Therefore, the high-low pricing

strategy is applied only when the monitoring cost c is relatively high for type II customers so that

they never choose to wait and monitor if the price is rH . Recall that type I customers choose to wait

and monitor when the price is rH . If the monitoring cost c is relatively low such that high-valuation

type II customers also choose to wait and monitor when the price is rH , then no customers would

purchase at rH and the firm’s optimal profit under the high-low pricing strategy is dominated by

static pricing at VL.

6.2 Effects on the Firm’s Profit and Pricing Strategy

Proposition 1 shows that offering price guarantees cannot improve the firm’s profit when type II

customers have a low price monitoring cost. Therefore, we restrict our attention to situations where

type II customers have a high price monitoring cost.

(a) Without Price Guarantees (b) With Price Guarantees

Figure 5 Customer Behavior under the Optimal Markovian Pricing Strategy with and without Price Guarantees.

It is instructive to compare customers’ purchase strategies under the optimal Markovian pricing

strategy with and without price guarantees, which are illustrated in Figure 5. When there are

no price guarantees, the Markovian pricing strategy discriminates customers based on their price

monitoring cost: type I customers (both high- and low-valuation) wait and monitor at the price rH

due to their zero monitoring cost, whereas type II customers behave myopically due to their high

monitoring cost. Offering price guarantees also allows the firm to discriminate customers based on

their valuation: high-valuation type I customers purchase at the price rH due to the existence of
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Without Price Guarantees v.s. With Price Guarantees

High-valuation type I
(
1−

√
2mλ
βVL

)
VL <

(
1−

√
2mλ
K

)
VL +

√
2mλ
K
VH

Revenue High-valuation type II VH = VH

Contribution Low-valuation type I
(
1−

√
2mλ
βVL

)
VL >

(
1−

√
2mλ
K

)
VL

Low-valuation type II 0 = 0

Price change cost 2mλ
(√

βVL
2mλ
− 1
)

> 2mλ
(√

K
2mλ
− 1
)

Table 1 Revenue Contribution of Each Customer Segment and the Cost of Price Changes.

price guarantees, whereas low-valuation type I customers wait and monitor when the price is rH ,

leading to different effective prices for them. Therefore, offering price guarantees allows the firm to

discriminate among customers based on their monitoring cost as well as their valuation.

It is worth noting that offering price guarantees can induce all high-valuation type I customers

to purchase at a high price, regardless of their arrival time. By injecting randomness into the

pricing strategy, the expected surplus for later-arriving high-valuation type I customers becomes

the same as that of earlier-arriving ones if they choose to take advantage of price guarantees. This

equalization of expected surplus incentivizes all high-valuation type I customers, regardless of their

arrival time, to make an immediate purchase to take advantage of price guarantees. As a result,

compared to the average purchase probability 1−
√

2mλ
βVL

without price guarantees, offering price

guarantees raises high-valuation type I customers’ average purchase probability to 1, as shown in

Table 1 below. This means that offering price guarantees helps to retain high-valuation type I

customers, because without price guarantees, those customers who do not purchase immediately

may exit the market while waiting. Furthermore, optimizing the price guarantee enables the firm to

collect an effective price higher than VL from high-valuation type I customers, even after accounting

for possible price refunds. To summarize, under Markovian pricing, offering price guarantees not

only enables an additional layer of price discrimination (based on customers’ valuation), but also

helps to boost customer demand by retaining short-lived customers to the greatest extent possible.

To analyze the effect of price guarantees on the firm’s profit, we first examine the revenue

contribution by each customer segment. We have the following corollary that holds immediately

by the firm’s profit equations (6) and (9).

Corollary 1. The revenue contribution of each customer segment, with and without price guar-

antees, is summarized in Table 1.

Without price guarantees, high- and low-valuation type I customers purchase at the price rL and

wait for a price drop at the price rH ; the price paid is VL, and the purchase probability is 1−
√

2mλ
βVL

,

yielding the revenue contribution
(
1 −

√
2mλ
βVL

)
VL. Offering a price guarantee allows the firm to
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better price discriminate type I customers by charging different prices to high-valuation type I

customers and low-valuation type I customers. While low-valuation type I customers still wait for

price drops at the high price rH , high-valuation type I customers would purchase immediately at

the price rH due to the price guarantee. According to Proposition 5(ii), the sale price is offered less

frequently under price guarantees. Consequently, compared with the case without price guarantees,

the purchase probability of low-valuation type I customers is lower; however, high-valuation type

I customers pay a higher expected price with a higher purchase probability. Moreover, the price

change cost is lower due to less frequent price changes.

Proposition 5 presents a few results regarding the effects of price guarantees on the firm’s profit

and pricing strategy.

Proposition 5. Suppose K > 2mλ and condition (8) hold. We have the following results:

(i) ΦB,∗ ≥Φ∗. That is, offering price guarantees improves the firm’s profit when the high/low pricing

strategy is offered. Furthermore, compared with the situation without price guarantees, the firm

is more likely to offer high/low pricing;

(ii) µB,∗H ≤ µ∗
H . That is, the firm offers the sale price VL less frequently under price guarantees.

Table 1 shows that compared with the case without price guarantees, low-valuation type I cus-

tomers contribute less revenue, while high-valuation type I customers contribute more revenue.

Proposition 5(i) confirms that the net effect is a positive one and the firm’s profit increases with a

price guarantee under the high/low pricing. Not surprisingly, high/low pricing is more likely to be

adopted with price guarantees than without, given that it is more likely to dominate static pricing,

compared with not offering a price guarantee.

Proposition 5(ii) claims that the firm offers the sale price less frequently under price guarantees,

which can be attributed to the firm’s desire to issue fewer refunds. Compared with the situation

without price guarantees, offering price guarantees can induce high-valuation type I customers to

purchase immediately—even if the current price is high. Because they keep monitoring the price

after purchase, offering flash sales less frequently would make the price guarantees more likely to

expire unused. That is, offering flash sales less frequently can reduce the cannibalization effect of

price guarantees on the high price.

Figure 6 illustrates the optimal market outcomes without price guarantees, using the same

parameter values as in Figure 4. Note that Figures 6 and 4 have very similar structures. However,

compared with Figures 4(b) and (c), the regions where the high/low pricing strategy is optimal

shrinks in Figures 6(b) and (c), indicating that offering price guarantees makes the high/low pricing

strategy more likely to be optimal, improving the firm’s profit in the meantime.
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(a)ρ= 0 (b)ρ=−0.5 (c)ρ=−0.9

Figure 6 The Firm’s Optimal Pricing Strategy for a High Monitoring Cost.

How do the cost of price change m and monitoring cost c for type II customers affect the firm’s

pricing strategy? By Proposition 2, when K ≤ 2mλ, the optimal pricing strategy is the same, with

or without price guarantees. Therefore, price guarantees are adopted only when m is relatively small

(K > 2mλ). Because βVL >K, the cutoff on the pricing monitoring cost c in (5) is smaller than

the cutoff in (8). Hence, high/low pricing with price guarantees is valid for a broader parameter

range. A lower threshold value means that the condition on the monitoring cost c is less restrictive

with price guarantees. This can be explained as follows. Recall that the high/low pricing strategy is

optimal only if c is large enough such that type II customers do not wait for the sale price. Because

the firm is less likely to offer the sale price in the presence of price guarantees, type II customers

are less willing to wait than that without price guarantees. Therefore, the monitoring cost c does

not have to be as large as that without price guarantees. To summarize, with price guarantees,

the high/low pricing is more likely to be offered, not only because offering price guarantees boosts

the firm profit, rendering it more likely to outperform the static pricing at either VH or VL, but

also because the variation in customers’ monitoring cost is less restrictive than that without price

guarantees.

6.3 Customer Surplus and Social Welfare

In this section, we discuss the implication of offering price guarantees on the customer surplus and

social welfare, compared with the situation without price guarantees. We focus on the case when

K > 2mλ and the monitoring cost is high for type II customers, because offering price guarantees

has no effects on the customer surplus and firm profit otherwise.

Under static pricing at VL and VH , customer surplus is α(VH − VL) and 0, respectively, inde-

pendent of whether the firm offers price guarantees. Under high/low pricing, the customer surplus

is higher without price guarantees. Under the high/low pricing strategy without price guarantees,
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Strategy Without Price Guarantees vs. With Price Guarantees
Static pricing at VH 0 = 0
Static pricing at VL α(VH −VL) = α(VH −VL)

High/low pricing γ
(

1−
√

2mλ
βVL

)
(VH −VL) ≥ γ

(
1−

√
2mλ
K

)
(VH −VL)

Table 2 Customer Surplus under Each Pricing Strategy with and without Price Guarantees.

high-valuation type I customers purchase with probability 1−
√

2mλ
βVL

and pay a price VL, whereas

the other purchasing customers pay a price equal to their valuation (see equation (9)). Hence, the

aggregate customer surplus is γ
(

1−
√

2mλ
βVL

)
(VH − VL). Under the high/low pricing strategy with

price guarantees, high-valuation type I customers pay the expected price
(

1−
√

2mλ
K

)
VL+

√
2mλ
K
VH ,

whereas the other purchasing customers pay a price equal to their valuation (see equation (6)).

Hence, the aggregate customer surplus is γ
(

1−
√

2mλ
K

)
(VH −VL). Because K ≤ βVL,

γ

(
1−

√
2mλ

βVL

)
(VH −VL)≥ γ

(
1−

√
2mλ

K

)
(VH −VL).

Therefore, offering price guarantees hurts the customer surplus when the firm uses the high/low

pricing strategy because, even taking into account the price adjustment under the price guarantee,

it is less likely for customers to pay the sale price VL. We have the following corollary.

Corollary 2. Customer surplus under each pricing strategy, with and without price guarantees,

is summarized in Table 2.

Proposition 5 shows that the firm is more likely to offer high/low pricing when a price guarantee

is offered. Therefore, when a price guarantee is introduced, the firm may switch from static pricing

to high/low pricing with price guarantees.5 The firm may also switch from high/low pricing without

price guarantees to high/low pricing with price guarantees.6 Proposition 6 reports the changes to

both customer surplus and social welfare before and after a price guarantee is introduced.

Proposition 6. When a price guarantee is introduced, there are three possible switches in pricing

strategies:

(i) When the firm switches from static pricing at VH (without price guarantees) to high/low

pricing with price guarantees, both the customer surplus and social welfare increase;

(ii) When the firm switches from static pricing at VL (without price guarantees) to high/low

pricing with price guarantees, both the customer surplus and social welfare decrease;

5 Suppose K > 2mλ and condition (5) hold. If ΦB,∗ >αVH (VL), then the firm will switch from static pricing at VH
(VL) to high/low pricing with price guarantees.

6 Suppose K > 2mλ and condition (8) hold. Then the firm will switch from high/low pricing without price guarantees
to high/low pricing with price guarantees.
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(iii) When the firm switches from high/low pricing without price guarantees to high/low pricing

with price guarantees, the customer surplus decreases, and the social welfare either increases or

decreases.

Proposition 6(i) shows that introducing a price guarantee can lead to a win-win outcome for

the firm and customers when the firm switches from static pricing at VH to high/low pricing with

price guarantees. Unfortunately, this is the only price switch that leads to a win-win outcome. In

the other two possible switches, the customer surplus decreases. This result is somewhat surprising

because price guarantees are usually viewed positively by consumer groups, as they allow customers

to take advantage of favorable price changes after purchase. However, when price guarantees are

introduced, the firm is less likely to offer the sale price; hence, on average customers may pay a

higher price even after taking into account the price adjustment made possible by price guarantees.

7. An Alternative Assumption on Customers’ Monitoring Behavior

In the base model, we interpret customers’ lifetime as their interest in the product. Once a customer

makes a purchase, her lifetime does not matter anymore. Under this assumption, a purchased

customer who decides to monitor for price refund keeps monitoring until the price guarantee applies

or expires. Alternatively, one may interpret customers’ lifetime as a patience parameter. Under this

alternative interpretation, a customer who purchases at a high price may stop monitoring when

her lifetime ends (her patience runs out) before the price guarantee expires. This section provides

the results when we adopt such an alternative assumption, where a customer stops monitoring for

price refund when the price guarantee expires or her lifetime ends, whichever occurs earlier. We

find that our main results and insights still hold qualitatively and are therefore robust under the

alternative assumption.

Following the same procedure as in the base model, we first analyze customer’s optimal purchase

decisions, based on which we derive the optimal Markovian pricing strategy. Due to the page limit,

we relegate the detailed analysis to Section S.1 of the Online Supplement. Proposition 7 below,

a counterpart of Proposition 2 in the base model, characterizes the optimal pricing strategy with

price guarantees when type II customers’ monitoring cost is high. Let

c1(rH , rL, µH , T ) =
(1− e−λT )µH + e−λT (λ+µH)(1− e−µHT )

2− e−λT − e−µHT
(rH − rL).

Proposition 7 (The optimal Markovian pricing strategy for a high monitoring cost).

Suppose the monitoring cost c is high (i.e., c > c1(rH , rL, µH , T )) such that type II customers do

not monitor the price after they purchase at the price rH . If K ≤ 2mλ, then the firm’s optimal



28

pricing strategy reduces to that without price guarantees in the base model. If K > 2mλ, there are

three possible outcomes for the firm’s optimal pricing strategy: (i) static pricing at VH ; (ii) Static

pricing at VL;

(iii) High/low pricing with price guarantees. Only if

c >
λ

2

(√
K

2mλ
− 1

)
(VH −VL), (10)

the firm uses a Markovian pricing strategy with price guarantees where

rB,∗H = VH , rB,∗L = VL, T ∗ =∞, µB,∗H = λ

(√
K

2mλ
− 1

)
, µB,∗L =∞.

The profit per unit time is

ΦB,∗ = (α− γ)VH + (β− γ)

(
1−

√
2mλ

K

)
VL + γ

[(
1−

√
2mλ

K

)
VL +

√
2mλ

K
VH

]

− 2mλ

(√
K

2mλ
− 1

)
. (11)

Customer behavior is the same as that in Proposition 2(iii).

Observe that the firm’s optimal Markovian pricing strategy and the corresponding customer

behavior are almost the same as that in Proposition 2 in the base model. There are only two

differences. One is the cutoff on the threshold of c. The threshold in condition (10) is lower than

that in condition (5), implying that the high/low pricing strategy is valid for a broader parameter

range under the alternative assumption. This can be explained as follows. Recall that the high/low

pricing strategy is optimal only if c is large enough such that type II customers do not monitor for

price refund. Under the alternative assumption, customers stop monitoring whenever their lifetime

ends, making it less likely for customers to receive the price refund, compared to the scenario in the

base model where customers keep monitoring until the price guarantee expires. In other words, type

II customers are less willing to purchase and monitor under the alternative assumption. Therefore,

the monitoring cost c does not have to be as large as that in the base model.

The other difference is the optimal expiration term of the price guarantee. Proposition 7 shows

that the optimal guarantee duration is set to infinity under the alternative assumption. Since

customers stop monitoring for price refund when their lifetime ends, T ∗ =∞ means that the

probability of getting the refund is equal to the probability that the price switches to rL before

the customer’s lifetime ends ( µH
λ+µH

). Recall that in the base model, customers keep monitoring

the price until the price guarantee expires, and the optimal guarantee duration is set to a finite

value such that the probability of getting the refund (1 − eµHT∗
, which is the probability that
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the price switches to rL before the price guarantee expires) is also equal to the probability that

the price switches to rL before their lifetime ends ( µH
λ+µH

). That is, under either assumption, the

expiration term is set to make the probability of getting the refund equal to the probability that

the price switches to rL before the customer’s lifetime ends. Importantly, the pricing strategy

(rH , rL, µH , µL), the firm’s optimal revenue, and the corresponding customer behavior are the same

under the alternative and original assumptions. This indicates that our main results and insights

are robust against the assumption of whether customers keep or stop monitoring the price when

their lifetime ends.

8. Summary and Concluding Remarks

This study examines the impact of price guarantees on a firm’s profit and customer behavior under

Markovian pricing strategies, where the firm sells to short-lived customers with an exponentially

distributed lifetime duration. Customers differ in their valuations and price monitoring costs. With

price guarantees, customers are refunded the price difference if the price drops within a given time

window after purchase. We show that, compared with not offering price guarantees, offering price

guarantees can improve the firm’s profit. This is because high/low pricing with price guarantees

not only differentiates customers with different price monitoring costs, but also price discriminates

customers with different valuations and retains customers effectively by encouraging early pur-

chases. Furthermore, we show that the firm offers the sale price less often under price guarantees,

and offering price guarantees does not always improve customer welfare or social welfare.

Our work can be extended in several ways. First, although customers’ lifetime can be used to

capture certain competitive effects implicitly (i.e., customers within more competitive product cat-

egories are expected to have shorter lifetimes), it does not explicitly model competition. Therefore,

one immediate direction is to investigate competitive Markovian pricing strategies, which is pursued

in the recent work of Du et al. (2022). Second, several interesting behavioral considerations would

enrich the model and analysis. One example is customer forgetfulness. Offering a price guarantee

might entice customers to purchase sooner at higher prices; yet, some customers may forget to use

the price guarantee in the event of a price drop. Such customer forgetfulness is likely to benefit

the firm and make offering price guarantees even more appealing. Third, our model assumes that

customers are refunded exactly the price difference when price guarantees are applied. However,

the refund amount may exceed the price difference to compensate for customers’ “hassle” or as a

way of “penalizing” the firm for the price change (Cohen-Vernik and Pazgal 2017). Would a refund

amount different from (especially above) the price difference ever be optimal? It is possible because

allowing the seller to optimize over the price difference enlarges the seller’s decision space. Finally,
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our model makes several empirically testable predictions. It would thus be interesting to relate

market characteristics to the modeling elements to empirically test these results.
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E-Companion
“Markovian Pricing with Price Guarantees”

Jianghua Wu, Dan Zhang, Yan Liu

This e-companion is divided into four sections. Section E.1 includes a sensitivity analysis to

investigate how the optimal profit, customer surplus, and social welfare vary with respect to key

model parameters. Section E.2 includes all auxiliary lemmas that will be used in Section E.3.

Section E.3 provides the proofs of the lemmas and propositions for the base model. Section E.4

provides the proofs of auxiliary lemmas and Proposition 1.

E.1. Sensitivity Analysis

This section analyzes how the optimal profit, customer surplus, and social welfare vary with respect

to key model parameters, such as the correlation between valuation and monitoring cost (measured

by γ), and customers’ lifetime duration (measured by λ). In our numerical experiments, we adopt

the same parameter values as in Figure 4 with (α,β,VH , c,m) = (0.5,0.5,1,0.1,0.1). Figures E.1 and

E.2 present the results for different values of VL. When VL = 0.4, static pricing at VL is dominated

by static pricing at VH , as αVH = 0.5. However, when VL = 0.6, static pricing at VL dominates

static pricing at VH .
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Figure E.1 Optimal profit, customer surplus, and social welfare v.s. γ

Figure E.1 depicts how the optimal profit, customer surplus, and social welfare change with

respect to the fraction of high-valuation type I customers, denoted by γ. Note that the larger the

fraction γ, the higher the correlation between the two dimensions (valuation and monitoring cost).

When γ is relatively small (i.e., γ ≤ 0.2), high/low pricing with price guarantees performs better
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than static pricing. In this case, the optimal Markovian pricing strategy is the high/low pricing.

Recall that Proposition 3 shows that a negative correlation is necessary for the profitability of the

high/low pricing strategy. Therefore, the optimal profit decreases as γ increases. However, when

γ is relatively large, static pricing outperforms the high/low pricing strategy. Consequently, the

optimal profit is flat in this parameter region. This explains the observed pattern in Figures E.1(a)

and (b), where the optimal profit first decreases and then remains flat as γ increases.

According to Table 2, the aggregate customer surplus under high/low pricing is γ(1 −√
2mλ
K

)(VH−VL), all of which is contributed by high-valuation type I customers. One might expect

that customer surplus would increase as the fraction of high-valuation type I customers, γ, rises.

However, it is important to note that µ∗
H , the rate of offering the low price VL, decreases as γ

increases. This is because the firm has an incentive to offer the sale price less frequently to avoid

the loss from the price refund claimed by the high-valuation type I customers. In other words,

a high-valuation type I customer is less likely to pay the low price VL as γ increases. Therefore,

the net effect on customer surplus depends on the relative magnitude of the two countervailing

factors. Figure E.1(a) shows that when VL = 0.4, the consumer surplus first increases and then

decreases as γ increases under the high/low pricing. When γ is large such that static pricing at

VH dominates, customer surplus reduces to 0 as only high-valuation customers make a purchase.

In contrast, Figure E.1(b) shows that when VL = 0.6, the consumer surplus always increases in γ

under the high/low pricing. When γ is large such that static pricing at VL dominates, customer

surplus increases to α(VH −VL) as all high-valuation customers pay the low price VL.

Figures E.1(a) and (b) also show that under the high/low pricing strategy, the social welfare

decreases as the fraction of high-valuation type I customers, γ, increases. This is because the social

welfare contributed by low-valuation type I customers decreases. Note that LI customers wait for

the sale price when the price is high and pay a price equal to their valuation in their purchase.

However, as the firm offers the sale price less frequently (i.e., µ∗
H decreases) with a higher γ, the

purchasing probability of low-valuation type I customers decreases. This, in turn, leads to a lower

overall social welfare.

This sensitivity analysis highlights the relationship between the fraction of high-valuation type I

customers, the optimal pricing strategy, and its impact on customer surplus and social welfare. The

different patterns observed for VL = 0.4 and VL = 0.6 further illustrate how the relative magnitudes

of the high and low valuations can influence these dynamics.

Figure E.2 depicts how the optimal profit, customer surplus, and social welfare change with

respect to customers’ lifetime duration λ. When λ is relatively large (i.e., customers stay in the
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Figure E.2 Optimal profit, customer surplus, and social welfare v.s. λ

market for a very short time on average), the high/low pricing strategy becomes less effective.

Therefore, the high/low pricing is optimal only when λ is relatively small. Otherwise, static pricing

is optimal. We make several observations. First, the profit under the high/low pricing decreases

as λ increases. As customers’ lifetime duration becomes shorter, although high-valuation type I

customers are less likely to obtain the price refund, low-valuation type I customers who wait for

the sale price are also less likely to make a purchase. Second, the aggregate customer surplus also

decreases in λ under the high/low pricing. As discussed earlier, the aggregate customer surplus is

contributed by high-valuation type I customers only. Since they are less likely to claim the price

refund as λ increases, the effective price paid by this segment of customers become higher, leading

to less customer surplus. Similar to the pattern observed in Figure E.1, the customer surplus

reduces to 0 when static pricing at VH dominates (i.e., VL = 0.4) and increases to α(VH−VL) when

static pricing at VL dominates (i.e., VL = 0.6). Third, not surprisingly, the social welfare decreases

in λ under the high/low pricing, because both the optimal profit and customer surplus decrease.

Finally, both Figures E.1 and E.2 show that when the firm switches from the high/low pricing

with price guarantees to static pricing at VH (VL), both the customer surplus and social welfare

decrease (increase), consistent with Proposition 6.

E.2. Auxiliary Lemmas

Lemmas E.1 and E.2 will be used in the proofs of Propositions 1, 2, and 4. Lemma E.1 demonstrates

the revenue contribution of a type II customer when the monitoring cost c is relatively high, which

corresponds to the optimal purchase strategy of a type II customer outlined in Lemma 2.
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Lemma E.1. Consider a type II customer with parameters (v, c) where c > µH(rH − rL). The rev-

enue contribution of the customer is as follows:

(a) If v < rL, then the customer never purchases and the revenue contribution is 0;

(b) If rL ≤ v < rH , then the customer purchases upon arrival when the price is rL, but leaves

immediately without a purchase when the price is rH . The revenue contribution is µH
µH+µL

rL;

(c) If v ≥ rH , then the customer purchases immediately at both prices, and the revenue contri-

bution is µL
µH+µL

rH + µH
µH+µL

rL.

Lemma E.2 demonstrates the revenue contribution of a type II customer when the monitoring

cost c is relatively low, which corresponds to the optimal purchase strategy of a type II customer

outlined in Lemma 3.

Lemma E.2. Consider a type II customer with parameters (v, c) where c≤ µH(rH − rL). The rev-

enue contribution of the customer is as follows:

(a) If v < rL, then the customer never purchases and the revenue contribution is 0;

(b) If rL ≤ v < rL+ c
µH

, then the customer purchases upon arrival when the price is rL, but leaves

immediately without a purchase when the price is rH . The revenue contribution is µH
µH+µL

rL;

(c) If rL + c
µH
≤ v <

(λ+µH )e−µHT (rH−rL− c
µH

)

λ
+ rL + c

µH
, then the customer purchases immedi-

ately at price rL and waits for the price rL when the price is rH . The revenue contribution is

µL
µH+µL

µH
λ+µH

rL + µH
µH+µL

rL;

(d) If v ≥
(λ+µH )e−µHT (rH−rL− c

µH
)

λ
+ rL + c

µH
, then the customer purchases immediately at both

prices. If the purchase is made at the price rH , she would keep monitoring the price until the

price guarantee is applied/expired. The revenue contribution is µL
µH+µL

[(1− e−µHT )rL + e−µHT rH ] +

µH
µH+µL

rL.

Lemma E.3 will be used in the proof of Proposition 1.

Lemma E.3. Suppose c≤ µH(rH − rL). In the presence of price guarantees,

(a) If rL = VL and rL ≤ VH < rL + c
µH

, then the high/low pricing strategy is not optimal;

(b) If rL = VL− c
µH

and VL ≥ rL + (λ+µH )e−µHT (rH−rL)
λ

, then the high/low pricing strategy is not

optimal.

Lemmas E.4 and E.5 will be used in the proof of Proposition 4. Lemma E.4 characterizes a type

II customer’s optimal purchase decisions when the price monitoring cost is low (c≤ µH(rH − rL))

without price guarantees. It follows immediately by taking T = 0 in Lemma 3. Lemma E.5 shows

that if the monitoring cost c is low enough such that a type II customer behaves as stated in

Lemma E.4, then a high/low pricing strategy is not optimal.
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Lemma E.4. Consider a type II customer with parameters (v, c) where c ≤ µH(rH − rL) and the

firm does not offer a price guarantee. The optimal purchase strategy of the customer is as follows:

(a) If v < rL, then G(rH) =G(rL) = 0 and the customer never purchases;

(b) If rL ≤ v < rL + c
µH

, then G(rH) = 0, G(rL) = v − rL, and the customer purchases upon

arrival when the price is rL, but leaves immediately without a purchase when the price is rH ;

(c) If rL + c
µH
≤ v < rH + µH (rH−rL)−c

λ
, then

G(rH) =
µH(v− rL)− c

λ+µH
, G(rL) = v− rL.

The customer purchases immediately upon arrival when the price is rL. When the price is rH , the

customer would wait for the price rL and leave without a purchase if rL is not offered before she

leaves the market;

(d) If v ≥ rH + µH (rH−rL)−c
λ

, then G(rH) = v− rH and G(rL) = v− rL. The customer purchases

immediately upon arrival.

(a)c > µH(rH − rL) (b)c≤ µH(rH − rL)

Figure E.3 A Type II Customer’s Optimal Purchase Strategy without Price Guarantees.

Lemma E.5. Without price guarantees, if the monitoring cost c is low enough (i.e., c≤ µH(rH −

rL)) such that a type II customer behaves as stated in Lemma E.4, then a high/low pricing strategy

is dominated by static pricing.

E.3. Proofs of Lemmas and Propositions for the Base Model

Proof of Lemma 1

When the price is rH , let X be the amount of time before the price is switched to rL. Then X

follows an exponential distribution with rate µH . A customer with valuation v purchasing at the

price rH earns an immediate surplus v− rH . Suppose the customer monitors the price for t units

of time (where t ≤ T ), she may get a refund of rH − rL in case the price drops before she stops

monitoring (X ≤ t) but incur a price monitoring cost c ·min{X, t}. Therefore, her total expected

surplus is as follows:

v− rH + (rH − rL) ·P (X ≤ t)− c ·E
[

min
{
X, t

}]
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=v− rH + (rH − rL)(1− e−µH t)− c
[∫ t

0

xdF (x) + t ·P (X > t)
]

=v− rH + (rH − rL)(1− e−µH t)− c
[
x ·F (x)|t0−

∫ t

0

F (x)dx+ t · e−µH t
]

[by partial integration]

=v− rH + (rH − rL)(1− e−µH t)− c
[
t ·F (t)−

∫ t

0

(1− e−µHx)dx+ t · e−µH t
]

=v− rH + (rH − rL)(1− e−µH t)− c
[
t · (1− e−µH t)−

[
x+

e−µHx

µH

]t
0

+T · e−µH t
]

=v− rH + (rH − rL)(1− e−µH t)− c1− e−µH t

µH

=v− rH + (rH − rL−
c

µH
)(1− e−µH t).

If the purchased customer chooses to monitor for price refund, it must be the case that rH − rL−
c
µH
≥ 0, because otherwise, she will never choose to monitor. Given that rH−rL− c

µH
≥ 0, it follows

immediately that the expected surplus above is maximized when t= T . Hence, if the customer who

purchases at price rH chooses to monitor the price, then it is optimal for her to keep monitoring

until the price guarantee expires/applies. This completes the proof.

Proof of Lemma 2

Part (a) is immediate.

Next, consider the situation when rL ≤ v < rH . Note that v − rH < 0, and thus the first term

in equation (2) can be removed. Moreover, since c > µH(rH − rL), it follows immediately that

v− rH + (1− e−µHT )(rH − rL− c
µ
)< 0, and thus the second term can also be removed. Therefore,

equations (2) and (3) can be written as

G(rH) = max
{µL
ν
G(rH) +

µH
ν
G(rL)− c

ν
,0
}
,

G(rL) = v− rL.

Recall that

ν = λ+µH +µL.

We show G(rH) = 0 by contradiction. Suppose for a contradiction that

G(rH) =
µL
ν
G(rH) +

µH
ν
G(rL)− c

ν
> 0.

Solving the equations gives

G(rH) =
µH(v− rL)− c

λ+µH
<
µH(v− rL)−µH(rH − rL)

λ+µH
=
µH(v− rH)

λ+µH
≤ 0,
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contradicting our supposition that G(rH) > 0. Hence, it must be the case that G(rH) = 0. This

gives the solution in Part (b).

Now, suppose v ≥ rH . Note that v − rH ≥ 0, and thus the last term 0 in equation (2) can be

removed. Because c > µH(rH−rL), it follows immediately that v−rH +(1−e−µHT )(rH−rL− c
µ
)<

v − rH , and thus the second term can also be removed. Therefore, equations (2) and (3) can be

written as

G(rH) = max
{
v− rH ,

µL
ν
G(rH) +

µH
ν
G(rL)− c

ν

}
,

G(rL) = v− rL.

Following a similar approach as above, one can show that G(rH) = v − rH . This completes the

proof.

Proof of Lemma 3

Part (a) is immediate.

Suppose v≥ rL. We have

v− rH + (1− e−µHT )(rH − rL−
c

µH
)≥ v− rH

when c≤ µH(rH − rL). Hence, equations (2)–(3) can be written as

G(rH) = max

{
v− rH + (1− e−µHT )(rH − rL−

c

µH
),
µL
ν
G(rH) +

µH
ν

(v− rL)− c

ν
,0

}
,

G(rL) = v− rL.

It remains to solve for G(rH), which we break into three cases. Recall that

ν = λ+µH +µL.

Case 1: Suppose

v− rH + (1− e−µHT )(rH − rL−
c

µH
)≥ µL

ν
G(rH) +

µH
ν

(v− rL)− c

ν
, (E.1)

v− rH + (1− e−µHT )(rH − rL−
c

µH
)≥ 0. (E.2)

It follows that

G(rH) = v− rH + (1− e−µHT )(rH − rL−
c

µH
).

Using the expressions of G(rH) in (E.1) and simplifying (E.2), we obtain

v≥ rL +
c

µH
+

(λ+µH)e−µHT (rH − rL− c
µH

)

λ
,
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v≥ rH − (1− e−µHT )(rH − rL−
c

µH
).

One can verify that

rL +
c

µH
+

(λ+µH)e−µHT (rH − rL− c
µH

)

λ
≥ rH − (1− e−µHT )(rH − rL−

c

µH
)

when c≤ µH(rH − rL). This gives the solution in Part (d).

Case 2: Suppose

µL
ν
G(rH) +

µH
ν

(v− rL)− c

ν
≥ v− rH + (1− e−µHT )(rH − rL−

c

µH
), (E.3)

µL
ν
G(rH) +

µH
ν

(v− rL)− c

ν
≥ 0. (E.4)

Then

G(rH) =
µL
ν
G(rH) +

µH
ν

(v− rL)− c

ν
.

It follows that

G(rH) =
µH(v− rL)− c

λ+µH
.

Using the expression of G(rH) in (E.3) and (E.4), we obtain

v≤ rL +
c

µH
+

(λ+µH)e−µHT (rH − rL− c
µH

)

λ
,

v≥ rL +
c

µH
.

One can verify that

rL +
c

µH
< rL +

c

µH
+

(λ+µH)e−µHT (rH − rL− c
µH

)

λ

when c≤ µH(rH − rL). This provides the solution in Part (c).

Case 3: Suppose

v− rH + (1− e−µHT )(rH − rL−
c

µH
)< 0, (E.5)

µL
ν
G(rH) +

µH
ν

(v− rL)− c

ν
< 0. (E.6)

It follows that G(rH) = 0. Using the expression of G(rH) in (E.5) and (E.6), we obtain

v < rH − (1− e−µHT )(rH − rL−
c

µH
),

v < rL +
c

µH
.

One can verify that

rH − (1− e−µHT )(rH − rL−
c

µH
)> rL +

c

µH

when c≤ µH(rH − rL). This leads to the solution in Part (b).

Combining the above cases completes the proof.
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A Sketch of Proof of Proposition 1

The proof of Proposition 1 is extensive, so we provide only a sketch of proof here. The complete

proof is relegated to Section E.4.

According to Lemma 3, it is never optimal to charge a low price rL that differs from VL and

VL− c
µH

. Therefore, we consider two cases: rL = VL and rL = VL− c
µH

.

When rL = VL, low-valuation type I customers purchase at the price rL but wait and monitor

when the price is rH . Meanwhile, low-valuation type II customers also purchase at rL, but they

leave without making a purchase at rH . Then, we only need to focus on the strategies of high-

valuation type I and high-valuation type II customers. Since the monitoring cost c is low, these

two segments of customers might choose either (a) to buy at the low price rL while waiting at the

high price rH ; or (b) to buy at both prices and monitor for price guarantees if a purchase is made

at the high price rH .

We analyze the four subcases (mixing the two options) one by one and find that each leads to a

lower profit compared to static pricing. The proof for the case where rL = VL− c
µH

follows a similar

procedure.

Proof of Proposition 2

First, type I customers’ behavior can be obtained by taking c = 0 in Lemma 3, while type II

customers’ behavior is the same as in Lemma 2. Taking into account the behavior of both types

of customers, it is never optimal to charge the low price rL different from VL. The only remaining

parameters are µH , µL, rH , and T .

When rL = VL, low-valuation type I customers purchase at the price rL but wait and monitor

when the price is rH , while low-valuation type II customers purchase at the price rL but leave

without a purchase when the price is rH .

High-valuation type I customers purchase at both prices immediately if

VH ≥ rL +
(λ+µH)e−µHT (rH − rL)

λ
. (E.7)

Moreover, if the purchase is made at the price rH , they would keep monitoring the price until the

price guarantee is applied or expires. If (E.7) is not satisfied, they would purchase at the price rL

immediately and wait and monitor when the price is rH . Inequality (E.7) can be rewritten as

rH ≤ rL +
λ(VH − rL)

(λ+µH)e−µHT
.
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For high-valuation type II customers, there are two possibilities. When VH < rH , they purchase

at the price rL but leave without a purchase when the price is rH . At the same time, if high-

valuation type I customers purchase at both prices, then customers’ decision is the same as in

Figure E.8; therefore, following the analysis in Lemma E.3(a), the high/low pricing strategy is

never optimal. If high-valuation type I customers purchase at the price rL but wait when the price

is rH , then no customers of the four segments purchase at the high price rH ; therefore, the high/low

pricing strategy is also not optimal. To summarize, when VH < rH , the high/low pricing strategy

is not optimal. Hereafter, we restrict our attention to the possibility with VH ≥ rH , in which case

high-valuation type II customers purchase at both prices but do not monitor for price guarantees.

We can analyze the firm’s pricing problem based on the range of rH . We consider two cases,

labeled Cases I and II.

Case I: rL + λ(VH−rL)
(λ+µH )e−µHT

< rH ≤ VH.

In this case, the purchase decisions of customers can be summarized in Figure E.4.

Figure E.4 Customer Purchase Decisions in Case I.

The analysis and result are the same as in the case without price guarantees (Case I in the proof

of Proposition 4). Hence,

ΦI,∗ =


(α− γ)VH +β

(
1−

√
2mλ
βVL

)
VL− 2m

(√
βλVL
2m
−λ
)
, if βVL− 2mλ> 0,

(α− γ)VH , if βVL− 2mλ≤ 0.

Case II: rH ≤ rL + λ(VH−rL)
(λ+µH )e−µHT

and rH ≤ VH.

In this case, the purchase decisions of customers can be summarized in Figure E.5.

Comparing rL + λ(VH−rL)
(λ+µH )e−µHT

with VH yields that

rL +
λ(VH − rL)

(λ+µH)e−µHT
≥ VH

if and only if λ
λ+µH

≥ e−µHT . Therefore, we have two subcases with respect to the range of T .
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Figure E.5 Customer Purchase Decisions in Case II.

Subcase II.A: λ
λ+µH

≥ e−µHT .

In this subcase, the optimal high price must be r∗H = VH . Let ΦII,A(µH , µL, T ) denote the firm’s

profit in this case. Then,

ΦII,A(µH , µL, T )

=γ

[
µL

µH +µL
[(1− e−µHT )VL + e−µHTVH ] +

µH
µH +µL

VL

]
+ (α− γ)

[
µL

µH +µL
VH +

µH
µH +µL

VL

]

+ (β− γ)

[
µL

µH +µL

µH
λ+µH

VL +
µH

µH +µL
VL

]
+ (1−α−β+ γ)

µH
µH +µL

VL−
2mµHµL
µH +µL

=VL +
µL

µH +µL

{
γ[(1− e−µHT )VL + e−µHTVH ] + (α− γ)VH + (β− γ)

µH
λ+µH

VL−VL− 2mµH

}

=VL +
µL

µH +µL

{
γ
[
VL + e−µHT (VH −VL)

]
+ (α− γ)VH + (β− γ)

µH
λ+µH

VL−VL− 2mµH

}
,

where the revenue contribution of each customer segment follows Lemmas E.1 and E.2. To under-

stand the cost of price changes, note that the prices go through cycles of high and low prices under

Markovian pricing. The average cycle length is 1
µH

+ 1
µL

, and there are two price changes in each

cycle. Therefore, the number of price changes per unit time is 2µHµL
µH+µL

.

Note that this expression is decreasing in T , so e−µHT
∗

= λ
λ+µH

. The profit in this subcase is

dominated by Subcase II.B analyzed below.

Subcase II.B: λ
λ+µH

≤ e−µHT .

In this subcase, the optimal high price must be r∗H = rL + λ(VH−rL)
(λ+µH )e−µHT

= VL + λ(VH−VL)
(λ+µH )e−µHT

. Let

ΦII,B(µH , µL, T ) denote the firm’s profit in this case. Then,

ΦII,B(µH , µL, T )

=γ

[
µL

µH +µL
·
[
(1− e−µHT )VL + e−µHT r∗H

]
+

µH
µH +µL

·VL
]

︸ ︷︷ ︸
revenue from HI customers
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+ (α− γ)

[
µL

µH +µL
·
(
VL +

λ(VH −VL)

(µH +λ)e−µHT

)
+

µH
µH +µL

·VL
]

︸ ︷︷ ︸
revenue from HII customers

+ (β− γ)

[
µL

µH +µL
· µH
λ+µH

·VL +
µH

µH +µL
VL

]
︸ ︷︷ ︸

revenue from LI customers

+ (1−α−β+ γ) · µH
µH +µL

·VL︸ ︷︷ ︸
revenue from LII customers

− 2mµHµL
µH +µL︸ ︷︷ ︸

cost of price changes

=VL +
µL

µH +µL

[
γ
λVH +µHVL
λ+µH

+ (α− γ)

(
VL +

λ(VH −VL)

(µH +λ)e−µHT

)

+ (β− γ) · µH
λ+µH

·VL−VL− 2mµH

]
,

where the revenue contribution of each customer segment follows Lemmas E.1 and E.2. Note that

the expression is increasing in T . At optimality, e−µHT
∗

= λ
λ+µH

. The profit expression simplifies to

ΦII,B(µH , µL, T
∗)

=VL +
µL

µH +µL

[
γ
λVH +µHVL
λ+µH

+ (α− γ)VH + (β− γ) · µH
λ+µH

·VL−VL− 2mµH

]
.

When the term in the square brackets is negative, the profit is less than VL, which is the profit

from static pricing at VL. We proceed with the analysis assuming the term in the square brackets

is positive. In our final analysis, we will compare the profit in this case with the optimal profit

without price guarantees.

Since ΦII,B(µH , µL, T
∗) is increasing in µL, the optimal value of µL is ∞. We have

ΦII,B(µH ,∞, T ∗) = γ
λVH +µHVL
λ+µH

+ (α− γ)VH + (β− γ) · µH
λ+µH

·VL− 2mµH . (E.8)

It can be shown that when K ≤ 0, ΦII,B(µH ,∞, T ∗) decreases in µH . Hence, the optimal µH = 0.

The corresponding profit is

ΦII,B(0,∞, T ∗) = αVH ,

which is the same as the revenue from static pricing at VH .

When K > 0, we can solve for µH using the first-order condition, which gives

µII,B,∗H =

{√
λK
2m
−λ, if K − 2mλ> 0,

0, if K − 2mλ≤ 0.
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The corresponding profit is

ΦII,B,∗ =


βVL + (α− γ)VH + (γVH −βVL)

√
2mλ
K
− 2mλ

(√
K

2mλ
− 1
)
, if K − 2mλ> 0,

αVH , if K − 2mλ≤ 0.

Moreover, when K − 2mλ > 0, by e−µHT
∗

= λ
λ+µH

, we obtain T ∗ =
ln
√

K
2mλ√

λK
2m−λ

, and thus r∗H = VL +

λ(VH−VL)
(λ+µH )e−µHT

∗ = VH . Putting µII,B,∗H , r∗H , and r∗L back to c > µH(rH − rL) gives condition (5).

Summarizing the results for Cases I and II yields the following:

• If K > 2mλ, then

ΦI,∗ = (α− γ)VH +β

(
1−

√
2mλ

βVL

)
VL− 2m

(√
βλVL
2m

−λ

)
,

ΦII,∗ = ΦII,B,∗ = βVL + (α− γ)VH + (γVH −βVL)

√
2mλ

K
− 2mλ

(√
K

2mλ
− 1

)
.

One can check that ΦII,∗ ≥ΦI,∗. Hence,

ΦB,∗ = βVL + (α− γ)VH + (γVH −βVL)

√
2mλ

K
− 2mλ

(√
K

2mλ
− 1

)
.

• If K ≤ 2mλ<βVL, then

ΦI,∗ = (α− γ)VH +β

(
1−

√
2mλ

βVL

)
VL− 2m

(√
βλVL
2m

−λ

)
,

ΦII,∗ = ΦII,B,∗ = αVH .

Hence,

ΦB,∗ = max
{

(α− γ)VH +β

(
1−

√
2mλ

βVL

)
VL− 2m

(√
βλVL
2m

−λ

)
, αVH

}
.

• If K ≤ βVL ≤ 2mλ, then ΦI,∗ = (α− γ)VH <αVH = ΦII,∗. Hence, ΦB,∗ = ΦII,∗ = αVH .

Comparing VL, αVH , and ΦB,∗ when K ≤ 2mλ shows that the pricing strategy is the same as

that in Proposition 4. Comparing the profits when K > 2mλ yields the results in Parts (i)–(iii).

This completes the proof of Proposition 2.

Proof of Proposition 3

Note that ΦB,∗ ≥ αVH leads to the condition

β

(
1−

√
2mλ

K

)
VL− γ

(
1−

√
2mλ

K

)
VH − 2mλ

(√
K

2mλ
− 1

)
≥ 0. (E.9)
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And ΦB,∗ ≥ VL leads to the condition

αVH − γ

(
1−

√
2mλ

K

)
VH −

(
1−β+β

√
2mλ

K

)
VL− 2mλ

(√
K

2mλ
− 1

)
≥ 0. (E.10)

It suffices to show that the conditions (E.9) and (E.10) for the optimality of the high/low pricing

strategy do not hold when γ ≥ αβ.

When γ ≥ αβ, we have

β

(
1−

√
2mλ

K

)
VL− γ

(
1−

√
2mλ

K

)
VH − 2mλ

(√
K

2mλ
− 1

)

≤β

(
1−

√
2mλ

K

)
VL−αβ

(
1−

√
2mλ

K

)
VH − 2mλ

(√
K

2mλ
− 1

)

=β

(
1−

√
2mλ

K

)
(VL−αVH)− 2mλ

(√
K

2mλ
− 1

)
, (E.11)

and

αVH − γ

(
1−

√
2mλ

K

)
VH −

(
1−β+β

√
2mλ

K

)
VL− 2mλ

(√
K

2mλ
− 1

)

≤αVH −αβ

(
1−

√
2mλ

K

)
VH −

(
1−β+β

√
2mλ

K

)
VL− 2mλ

(√
K

2mλ
− 1

)

=αVH

[
1−β

(
1−

√
2mλ

K

)]
−
[
1−β

(
1−

√
2mλ

K

)]
VL− 2mλ

(√
K

2mλ
− 1

)

=(αVH −VL)
[
1−β

(
1−

√
2mλ

K

)]
− 2mλ

(√
K

2mλ
− 1

)
. (E.12)

If VL ≥ αVH , then (E.12) is negative; otherwise, (E.11) is negative. That is, (E.9) and (E.10)

cannot hold simultaneously. This completes the proof.

Proof of Proposition 4

We first consider static pricing. It is clear that the firm either uses the price VL or the price VH ,

with the corresponding profit rate of VL or αVH .

Lemma E.5 indicates that when c is small enough such that a type II customer behaves as in

Lemma E.4, the high/low pricing strategy cannot improve the firm’s profit. Now, suppose c is large

enough such that a type II customer behaves as in Lemma 2.

A type I customer’s behavior can be obtained by taking c = 0 in Lemma E.4. When c = 0,

Lemma E.4(b) does not exist anymore. Taking into account the behavior of both types of customers,

it is never optimal to charge a low price rL different from VL. Note that if rL = VL− c
µH

, then by

c > µH(rH−rL), one can obtain rH <VL, and thus the firm’s profit is no more than VL. Hence, it is

never optimal to set rL = VL− c
µH

. When rL = VL, low-valuation type I customers purchase at the
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price rL but wait and monitor when the price is rH . Meanwhile, low-valuation type II customers

purchase at the price rL but leave without a purchase when the price is rH .

Next, we consider the high/low pricing strategy under which the firm needs to choose three

parameters, rH , µH , and µL. According to Lemma E.4, high-valuation type I customers purchase

immediately if

VH ≥ rH +
µH
λ

(rH −VL). (E.13)

If this condition is not satisfied, they purchase at the price VL immediately and wait otherwise.

Inequality (E.13) can be rewritten as

rH ≤
λVH +µHVL
λ+µH

.

According to Lemma 2, high-valuation type II customers purchase immediately at both prices

if VH ≥ rH . If this condition is not satisfied, they purchase at the price rL but leave without a

purchase when the price is rH . We ignore the possibility of rH > VH , because customers never

purchase at rH >VH , in which case, the profit is no more than VL.

From the condition on rH , we can analyze the firm’s pricing problem based on the range of

rH . We consider two cases, labeled Case I and Case II. We will show that the high/low pricing

strategy in Case II can never be optimal. Therefore, finding the optimal solution to the firm’s

pricing problem entails comparing the solution to Case I with static pricing at either VL or VH ,

which leads to the results in Proposition 4.

Case I: VL <
λVH+µHVL

λ+µH
< rH ≤ VH

In this case, the purchase decisions of customers can be summarized in Figure E.6.

Figure E.6 Customer Purchase Decisions in Case I.

Because the firm’s profit is linear in the prices, we must have the optimal high price rI,∗H = VH .
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The only remaining parameters are µH and µL. Let ΦI(µH , µL) denote the firm’s profit per unit

time in this case. Then,

ΦI(µH , µL) = β

[
µL

µH +µL
· µH
λ+µH

+
µH

µH +µL

]
·VL︸ ︷︷ ︸

revenue from HI and LI customers

+ (α− γ)

[
µL

µH +µL
·VH +

µH
µH +µL

VL

]
︸ ︷︷ ︸

revenue from HII customers

+ (1−α−β+ γ) · µH
µH +µL

·VL︸ ︷︷ ︸
revenue from LII customers

− 2mµHµL
µH +µL︸ ︷︷ ︸

cost of price changes

= VL +
µL

µH +µL

[
(α− γ)VH −

λ+ (1−β)µH
λ+µH

·VL− 2mµH

]
. (E.14)

A few comments are in order. The revenue contribution of each customer segment follows Lem-

mas E.1 and E.2. To understand the cost of price changes, note that the prices go through cycles

of high and low prices under Markovian pricing. The average cycle length is 1
µH

+ 1
µL

, and there are

two price changes in each cycle. Therefore, the number of price changes per unit time is 2µHµL
µH+µL

.

The profit is no more than that of static pricing at VL if the term in the square brackets is

negative. Hereafter, we assume that the term in the brackets is positive.

To determine the optimal µH and µL, we solve the following optimization problem:

ΦI,∗ = max
µH≥0,µL≥0

ΦI(µH , µL). (E.15)

Since the objective function is increasing in µL, µI,∗L =∞ at optimality. It follows that

ΦI(µH ,∞) =
βµH
λ+µH

·VL + (α− γ)VH − 2mµH . (E.16)

It can be verified that ΦI(µH ,∞) is concave in µH . Therefore, the optimal µH can be obtained

from the first-order condition, giving the solution

µI,∗H =

{√
βλVL
2m
−λ, if βVL− 2mλ> 0,

0, if βVL− 2mλ≤ 0.

The corresponding prices are

rI,∗H = VH , rI,∗L = VL,

and the firm’s profit is

ΦI,∗ =


(α− γ)VH +β

(
1−

√
2mλ
βVL

)
VL− 2m

(√
βλVL
2m
−λ
)
, if βVL− 2mλ> 0,

(α− γ)VH , if βVL− 2mλ≤ 0.
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We comment here that the expression for the firm’s profit is obtained by plugging the optimal

solution into the objective value. When βVL− 2mλ≤ 0, the profit is dominated by αVH , which is

the profit under static pricing at VH . Therefore, the high/low pricing strategy when βVL−2mλ≤ 0

is never optimal.

Putting µ∗
H , r∗H , and r∗L into the condition c > µH(rH − rL) yields the constraint

c > λ
(√ βVL

2mλ
− 1
)

(VH −VL).

Case II: VL < rH ≤ λVH+µHVL
λ+µH

≤ VH

In this case, the purchase decisions of customers can be summarized in Figure E.7.

Figure E.7 Customer Purchase Decisions in Case II.

Because the firm’s profit is linear in the prices, the optimal high price must be λVH+µHVL
λ+µH

. Let

ΦII(µH , µL) denote the firm’s profit per unit time in this case as a function of µH and µL. Then,

ΦII(µH , µL) = α

[
µL

µH +µL
· λVH +µHVL

λ+µH
+

µH
µH +µL

·VL
]

︸ ︷︷ ︸
revenue from HI and HII customers

+ (β− γ)

[
µL

µH +µL
· µH
λ+µH

·VL +
µH

µH +µL
VL

]
︸ ︷︷ ︸

revenue from LI customers

+ (1−α−β+ γ) · µH
µH +µL

·VL︸ ︷︷ ︸
revenue from LII customers

− 2mµHµL
µH +µL︸ ︷︷ ︸

cost of price changes

= VL +
µL

µH +µL

[
α(λVH +µHVL) + (β− γ)µHVL

λ+µH
−VL− 2mµH

]
.

When the term in the square brackets is negative, the profit is less than VL, which is the profit

from charging the static price VL. We proceed with our analysis by assuming that the term in the

brackets is positive.
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The profit maximization problem can be written as

ΦII,∗ = max
µH≥0,µL≥0

ΦII(µH , µL). (E.17)

Since the objective function is increasing in µL, µII,∗L =∞ at optimality. It follows that

ΦII(µH ,∞) =
α(λVH +µHVL) + (β− γ)µHVL

λ+µH
− 2mµH . (E.18)

It can be verified that ΦII(µH ,∞) is concave in µH . Therefore, the optimal µH can be obtained

via the first-order condition, giving the solution

µII,∗H =


√

λ[(α+β−γ)VL−αVH ]

2m
−λ, if

√
λ[(α+β−γ)VL−αVH ]

2m
−λ> 0,

0 if
√

λ[(α+β−γ)VL−αVH ]

2m
−λ≤ 0.

While we can write the solution to the optimization problem (E.17) explicitly, we instead show

that the optimal profit is dominated by the profit under static pricing at either VL or VH . As a

result, we can conclude that the high/low pricing strategy in this case is never optimal.

We have

ΦII,∗ = ΦII(µII,∗H ,∞) =
α(λVH +µII,∗H VL) + (β− γ)µII,∗H VL

λ+µII,∗H

− 2mµII,∗H

= (α+β− γ)VL +
λ(αVH − (α+β− γ)VL)

λ+µII,∗H

− 2mµII,∗H .

If αVH − (α+β− γ)VL ≤ 0, then

ΦII,∗ ≤ (α+β− γ)VL− 2mµII,∗H < (α+β− γ)VL ≤ VL.

If αVH − (α+β− γ)VL > 0, then

ΦII,∗ < (α+β− γ)VL +
λ(αVH − (α+β− γ)VL)

λ
− 2mµII,∗H = αVH − 2mµII,∗H ≤ αVH .

This completes the proof.

Proof of Proposition 5

The result follows by comparing the profit under price guarantees in Proposition 2 with that in

Proposition 4. We first show that the profit under high/low pricing with price guarantees specified

in Part (iii) is always higher than that under high/low pricing with flash sales specified in Part

(iii) of Proposition 4. By (E.8), we have

ΦB,∗ ≥ γλVH +µ∗
HVL

λ+µ∗
H

+ (α− γ)VH + (β− γ) · µ∗
H

λ+µ∗
H

·VL− 2mµ∗
H
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=
βµ∗

HVL + γλVH
λ+µ∗

H

+ (α− γ)VH − 2mµ∗
H

≥ β µ∗
H

λ+µ∗
H

VL + (α− γ)VH − 2mµ∗
H

= Φ∗.

In the above, the first inequality follows from the optimality of µB,∗H . Because high/low pricing

with price guarantees generates higher profits than high/low pricing without price guarantees, it

is more likely for high/low pricing in Part (iii) to be optimal, compared with situations where no

price guarantee is offered.

Because K ≤ βVL, it follows immediately that µB,∗H ≤ µ∗
H .

Proof of Proposition 6

We use the customer surplus reported in Table 2 in our proof.

(i) Under static pricing at VH without price guarantees, the customer surplus is zero. When

the firm switches to high/low pricing with price guarantees (which implies higher firm profit), the

customer surplus is positive. Therefore, both the customer surplus and social welfare (which is the

sum of the customer surplus and firm profit) increase.

(ii) Under static pricing at VL without price guarantees, the firm’s profit is VL and the customer

surplus is α(VH − VL); see Table 2. Hence, the social welfare is αVH + (1− α)VL. When the firm

switches to high/low pricing with price guarantees, the customer surplus is γ
(

1−
√

2mλ
K

)
(VH−VL),

which is lower than α(VH −VL). Hence, the customer surplus decreases. The social welfare is

(α− γ)VH + (β− γ)

(
1−

√
2mλ

K

)
VL + γ

{(
1−

√
2mλ

K

)
VL +

√
2mλ

K
VH

}
− 2mλ

(√
K

2mλ
− 1

)

+ γ
(

1−
√

2mλ

K

)
(VH −VL)

=αVH + (β− γ)
(

1−
√

2mλ

K

)
VL− 2mλ

(√
K

2mλ
− 1

)
≤αVH + (1−α)VL.

Hence, the social welfare also decreases.

(iii) As shown in Table 2, the customer surplus is lower when the firm switches from high/low

pricing without price guarantees to high/low pricing with price guarantees.

Next, we discuss the social welfare. Under high/low pricing without price guarantees, the social

welfare is

αVH − γ

√
2mλ

βVL
VH + (β− γ)

(
1−

√
2mλ

βVL

)
VL− 2mλ

(√
βVL
2mλ

− 1

)
.
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Under high/low pricing with price guarantees, the social welfare is

αVH + (β− γ)

(
1−

√
2mλ

K

)
VL− 2mλ

(√
K

2mλ
− 1

)
.

The comparison reduces to checking whether

(β− γ)

(√
2mλ

βVL
−
√

2mλ

K

)
VL + γ

√
2mλ

βVL
VH + 2mλ

(√
βVL
2mλ

−
√

K

2mλ

)

is positive. Note that K < βVL, so the first term above is negative, while the second and third

terms are positive. Hence, the comparison of the social welfare depends on the parameters. That

is, social welfare can either increase or decrease when the firm introduces price guarantees.

E.4. Proofs of Auxiliary Lemmas and Proposition 1

Proof of Lemma E.1

Lemma E.1 demonstrates the revenue contribution of a type II customer when the monitoring

cost c is relatively high, which corresponds to the optimal purchase strategy of a type II customer

outlined in Lemma 2. In Lemma 2, if v < rL, the customer never purchases, and thus the revenue

contribution is zero. If rL ≤ v < rH , the customer only purchases when the price is rL, the probability

of which is µH
µH+µL

, and leaves if the price is rH ; hence, the revenue contribution is µH
µH+µL

· rL. If

v ≥ rH , the customer always purchases at the current price. Taking into account the stationary

probabilities of the price, the total revenue is

µL
µH +µL

· rH +
µH

µH +µL
· rL.

This completes the proof.

Proof of Lemma E.2

Lemma E.2 demonstrates the revenue contribution of a type II customer when the monitoring cost c

is relatively low, which corresponds to the optimal purchase strategy of a type II customer outlined

in Lemma 3. Here, we only focus on Lemma 3(c)-(d). In Lemma 3(c), the customer purchases only

at price rL and will wait and monitor if the price is rH . The solution to G(rH) implies that when

the current price is rH , the customer eventually purchases with probability µH
λ+µH

, where µH
λ+µH

is

also the probability that the firm offers a low price before the customer’s lifetime ends. Taking into

account the stationary probabilities of the price, the total expected revenue is

µL
µH +µL

· µH
λ+µH

· rL +
µH

µH +µL
· rL.
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In Lemma 3(d), the customer always purchases at the current price. However, the customer will be

refunded the price difference if the price guarantee is applied. According to the solution of G(rH)

in Lemma 3(d), the price minus the expected refund claimed by a customer who purchases at the

high price is rH − (1− e−µHT )(rH − rL) = (1− e−µHT )rL + e−µHT rH , where 1− e−µHT is exactly the

probability that the firm offers a sale before the price guarantee expires, in which case she receives

the refund and her revenue contribution is rL. Taking into account the stationary probabilities of

the price, the total revenue is

µL
µH +µL

·
[
(1− e−µHT )rL + e−µHT rH

]
+

µH
µH +µL

· rL.

This completes the proof.

Proof of Lemma E.3

Part (a): When rL = VL, low-valuation type I customers purchase at the price rL but wait and

monitor when the price is rH . Meanwhile, low-valuation type II customers purchase at the price

rL but leave without a purchase when the price is rH .

When rL ≤ VH < rL + c
µH

, high-valuation type II customers purchase at the price rL but leave

without a purchase when the price is rH , because rH ≥ rL + c
µH

> vH .

High-valuation type I customers purchase at both prices immediately (and monitor for price

guarantee if the purchase is made at the price rH) if

VH ≥ rL +
(λ+µH)e−µHT (rH − rL)

λ
. (E.19)

Otherwise, they would purchase at the price rL but wait and monitor when the price is rH .

If high-valuation type I customers purchase at the price rL but wait and monitor when the price

is rH , then none of the four customer segments purchase at the high price rH . Therefore, it is

impossible to obtain a profit higher than rL = VL.

Suppose they purchase at both prices immediately, that is, (E.19) holds. (E.19) can be rewritten

as

rH ≤ rL +
λ(VH − rL)

(λ+µH)e−µHT
.

The decision of each segment of customers can be summarized in Figure E.8.

Because the firm’s profit is linear in prices, we must have the optimal high price r∗H = rL +

λ(VH−rL)
(λ+µH )e−µHT

. The only remaining parameters are µH and µL. Let Φ(µH , µL, T ) denote the firm’s

profit per unit time in this case. We have

Φ(µH , µL, T ) = (1−β)
µH

µH +µL
rL + γ

( µH
µH +µL

rL +
µL

µH +µL
[(1− e−µHT )rL + e−µHT rH ]

)
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Figure E.8 Customer Purchase Decisions.

+ (β− γ)
( µH
µH +µL

rL +
µL

µH +µL

µH
λ+µH

rL

)
− 2mµHµL
µH +µL

=
µH

µH +µL
rL + γ

µL
µH +µL

[(1− e−µHT )rL + e−µHT rH ] + (β− γ)
µL

µH +µL

µH
λ+µH

rL−
2mµHµL
µH +µL

= rL +
µL

µH +µL

{
γ[(1− e−µHT )rL + e−µHT rH ] + (β− γ)

µH
λ+µH

rL− rL− 2mµH

}
= VL +

µL
µH +µL

{
γ
µHVL +λVH
λ+µH

+ (β− γ)
µH

λ+µH
VL−VL− 2mµH

}
.

If the term in the brackets is negative, then Φ(µH , µL, T ) < VL. Suppose the term is positive.

Note that Φ(µH , µL, T ) is increasing in µL, so µ∗
L =∞. It follows that

Φ(µH ,∞, T ) = γ
µHVL +λVH
λ+µH

+ (β− γ)
µH

λ+µH
VL− 2mµH

=
γλVH +βµHVL

λ+µH
− 2mµH

= βVL +
γλVH −βλVL

λ+µH
− 2mµH .

If γλVH −βλVL < 0, then Φ(µH ,∞, T )<VL. Otherwise,

Φ(µH ,∞, T )<βVL +
γλVH −βλVL

λ
− 2mµH = γVH − 2mµH <αVH .

This completes the proof of Part (a).

Part (b): When rL = VL − c
µH

, low-valuation type II customers purchase at the price rL but wait

and monitor when the price is rH .

When VH ≥ VL ≥ rL + (λ+µH )e−µHT (rH−rL)
λ

, both high- and low-valuation type I customers pur-

chase at both prices and monitor for price guarantees if the purchase is made at the price rH .

High-valuation type II customers purchase immediately if

VH ≥ rL +
c

µH
+

(λ+µH)e−µHT (rH − rL− c
µH

)

λ
. (E.20)
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Moreover, if the purchase is made at the price rH , they would keep monitoring the price until the

price guarantee is applied or expires. If (E.20) is not satisfied, they would purchase at the price rL

but wait and monitor when the price is rH .

Note that when customers purchase at the price rH and then monitor for price guarantees,

they pay an effective price (1− e−µHT )rL + e−µHT rH eventually. Putting rL = VL − c
µH

into VL ≥

rL + (λ+µH )e−µHT (rH−rL)
λ

yields

rH ≤ VL−
c

µH
+

λ

(λ+µH)e−µHT
c

µH
.

Therefore, the effective price

(1− e−µHT )rL + e−µHT rH

≤(1− e−µHT )(VL−
c

µH
) + e−µHT

[
VL−

c

µH
+

λ

(λ+µH)e−µHT
c

µH

]
=VL−

c

λ+µH
.

That is, none of the four customer segments pay an effective price higher than VL. Therefore, it is

impossible to obtain a profit higher than VL by adopting such a pricing strategy.

Proof of Lemma E.4

It holds immediately by taking T = 0 in Lemma 3.

Proof of Lemma E.5

We first consider static pricing. It is clear that the firm either uses the price VL or the price VH ,

with the corresponding profit rate of VL or αVH .

Suppose c is small enough such that a type II customer behaves as in Lemma E.4. Now, let us

consider a high/low pricing strategy under which the firm needs to decide four parameters, rH , rL,

µH , and µL. According to Lemma E.4, it is never optimal to charge a low price rL different from

VL and VL− c
µH

. Therefore, we consider two cases.

Case 1: rL = VL.

According to Lemma E.4, low-valuation type I customers purchase at the price rL, but wait and

monitor for a price drop when the price is rH . Meanwhile, low-valuation type II customers purchase

at the price rL, but leave immediately without a purchase when the price is rH .

High-valuation type I customers purchase immediately if

VH ≥ rH +
µH(rH − rL)

λ
. (E.21)
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If condition (E.21) is not satisfied, they purchase at the price rL immediately but wait and monitor

when the price is rH .7 Inequality (E.21) can be rewritten as

rH ≤
λVH +µHrL
λ+µH

.

High-valuation type II customers purchase immediately if

VH ≥ rH +
µH(rH − rL)− c

λ
. (E.22)

If this condition does not hold, they purchase at the price rL immediately but wait and moni-

tor if the price is rH (as shown in Lemma E.4(c)). Since rL + c
µH
≤ rL + µH (rH−rL)

µH
= rH ≤ VH ,

Lemma E.4(b) will not occur. Inequality (E.22) can be written as

rH ≤
λVH +µHrL + c

λ+µH
.

From the conditions on rH , we can analyze the firm’s pricing problem based on the range of rH .

We consider three cases, labeled Cases 1.1-1.3. We will show that each of the three cases gener-

ates a profit lower than max{VL, αVH}. We restrict our attention to VH ≥ rH , because otherwise,

customers never purchase at the high price rH , in which case the high/low pricing strategy cannot

improve the firm’s profit.

Case 1.1: VH ≥ rH ≥ λVH+µHrL+c

λ+µH
≥ λVH+µHrL

λ+µH
.

In this case, both high-valuation type I and high-valuation type II customers purchase at the

price rL, but wait and monitor for rL if the price is rH . The purchase decisions of customers can

be summarized in Figure E.9.

Figure E.9 Customer Purchase Decisions in Case 1.1.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H = VH .

7 Note that when c= 0, Lemma E.4(b) does not exist anymore.
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The only remaining parameters are µH and µL. Let Φ1.1(µH , µL) denote the firm’s profit per unit

time. Then,

Φ1.1(µH , µL)

=(α+β− γ)
( µL
µH +µL

µH
λ+µH

+
µH

µH +µL

)
rL + (1−α−β+ γ)

µH
µH +µL

rL−
2mµHµL
µH +µL

=
µH

µH +µL
VL + (α+β− γ)

µL
µH +µL

µH
λ+µH

VL−
2mµHµL
µH +µL

<VL.

Note that the last term on the right-hand side of the first equality is the cost of price changes.

Under high/low pricing, the prices go through cycles of high and low prices. The average cycle

length is 1
µH

+ 1
µL

, and there are two price changes in each cycle. Therefore, the number of price

changes per unit time is 2µHµL
µH+µL

.

Case 1.2: VH ≥ λVH+µHrL+c

λ+µH
≥ rH ≥ λVH+µHrL

λ+µH
.

In this case, high-valuation type I customers purchase at the price rL but wait and monitor when

the price is rH . Meanwhile, high-valuation type II customers purchase at both prices immediately.

Customers’ purchase decisions are summarized in Figure E.10.

Figure E.10 Customer Purchase Decisions in Case 1.2.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =

λVH+µHrL+c

λ+µH
. The only remaining parameters are µH and µL. Let Φ1.2(µH , µL) denote the firm’s

profit per unit time. Then,

Φ1.2(µH , µL)

=β
( µL
µH +µL

µH
λ+µH

+
µH

µH +µL

)
rL + (α− γ)

( µL
µH +µL

rH +
µH

µH +µL
rL

)
+ (1−α−β+ γ)

µH
µH +µL

rL−
2mµHµL
µH +µL
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=
µH

µH +µL
rL +β

µL
µH +µL

µH
λ+µH

rL + (α− γ)
µL

µH +µL
rH −

2mµHµL
µH +µL

=
µH

µH +µL
VL +β

µL
µH +µL

µH
λ+µH

VL + (α− γ)
µL

µH +µL

λVH +µHVL + c

λ+µH
− 2mµHµL
µH +µL

=VL +
µL

µL +µH

[
β

µH
λ+µH

VL + (α− γ)
λVH +µHVL + c

λ+µH
−VL

]
− 2mµHµL
µH +µL

.

A few comments are in order. First, as in Case 1.1, the last term on the right-hand side is the

cost of price changes. Second, it is impossible to obtain a profit higher than charging a static price

VL if the value of the term in the brackets is negative. We ignore this condition for now, as we

will compare the profit in this case with the profit max{VL, αVH} from static pricing in our final

analysis.

To determine the optimal µH and µL, we solve the following optimization problem:

Φ1.2
∗ = max

µH≥0,µL≥0
Φ1.2(µH , µL).

To solve this optimization problem, first note that the objective function is increasing in µL, so

µ∗
L =∞. It follows that

Φ1.2(µH ,∞) = β
µH

λ+µH
VL + (α− γ)

λVH +µHVL + c

λ+µH
− 2mµH . (E.23)

It can be verified that Φ1.2(µH ,∞) is concave in µH . Therefore, using the first-order condition, we

obtain

µ∗
H =

{√
βλVL+(α−γ)(λVL−λVH−c)

2m
−λ, if βVL + (α− γ)(VL−VH − c/λ)≥ 2mλ,

0, otherwise.

Putting µ∗
H into (E.23) gives the optimal profit Φ1.2

∗ in this case. Next, we show

Φ1.2
∗ ≤max{VL, αVH}.

If µ∗
H = 0, then

Φ1.2
∗ = (α− γ)VH ≤max{VL, αVH}.

Suppose

µ∗
H =

√
βλVL + (α− γ)(λVL−λVH − c)

2m
−λ.

Then, by the constraint βVL + (α− γ)(VL−VH − c/λ)≥ 2mλ, we obtain

c≤ λβVL
α− γ

+λ(VL−VH). (E.24)
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Putting (E.24) into (E.23) yields

Φ1.2(µH ,∞)≤ β µH
λ+µH

VL + (α− γ)
λVH +µHVL + λβVL

α−γ +λ(VL−VH)

λ+µH
− 2mµH

= (α+β− γ)VL− 2mµH

<VL.

Case 1.3: VH ≥ λVH+µHrL+c

λ+µH
≥ λVH+µHrL

λ+µH
≥ rH .

In this case, both high-valuation type I and high-valuation type II customers purchase immedi-

ately at both prices. Customers’ purchase decisions are summarized in Figure E.11.

Figure E.11 Customer Purchase Decisions in Case 1.3.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =

λVH+µHrL
λ+µH

. The only remaining parameters are µH and µL. Let Φ1.3(µH , µL) denote the firm’s profit

per unit time. Then,

Φ1.3(µH , µL)

=α
( µL
µH +µL

rH +
µH

µH +µL
rL

)
+ (β− γ)

( µL
µH +µL

µH
λ+µH

+
µH

µH +µL

)
rL

+ (1−α−β+ γ)
µH

µH +µL
rL−

2mµHµL
µH +µL

=
µH

µH +µL
rL +α

µL
µH +µL

rH + (β− γ)
µL

µH +µL

µH
λ+µH

rL−
2mµHµL
µH +µL

=
µH

µH +µL
VL +α

µL
µH +µL

λVH +µHVL
λ+µH

+ (β− γ)
µL

µH +µL

µH
λ+µH

VL−
2mµHµL
µH +µL

=VL +
µL

µL +µH

[
α
λVH +µHVL
λ+µH

+ (β− γ)
µH

λ+µH
VL−VL− 2mµH

]
.

Again, if the term in the square brackets is negative, it is impossible to obtain a profit higher than

VL. Hereafter, we assume that the term in the brackets is positive.



28

To determine the optimal µH and µL, we solve the following optimization problem:

Φ1.3
∗ = max

µH≥0,µL≥0
Φ1.3(µH , µL).

First note that the objective function is increasing in µL, so µ∗
L =∞. It follows that

Φ1.3(µH ,∞) = α
λVH +µHVL
λ+µH

+ (β− γ)
µH

λ+µH
VL− 2mµH

=
α(λVH +µHVL) + (β− γ)µHVL

λ+µH
− 2mµH

= (α+β− γ)VL +
λ(αVH − (α+β− γ)VL)

λ+µH
− 2mµH .

Instead of writing the solution to the above optimization problem explicitly, we show that the

optimal profit is dominated by the profit under static pricing at either VL or VH . As a result, we

can conclude that the high/low pricing strategy in this case is not optimal.

If αVH − (α+β− γ)VL ≤ 0, then

Φ1.3(µ∗
H ,∞)≤ (α+β− γ)VL− 2mµ∗

H < (α+β− γ)VL ≤ VL.

If αVH − (α+β− γ)VL > 0, then

Φ1.3(µ∗
H ,∞)< (α+β− γ)VL +

λ(αVH − (α+β− γ)VL)

λ
− 2mµ∗

H = αVH − 2mµ∗
H ≤ αVH .

This completes the proof of Case 1.

Case 2: rL = VL− c
µH

.

According to Lemma E.4, both low-valuation type I and low-valuation type II customers purchase

at the price rL but wait and monitor if the price is rH . The behavior of high-valuation type I and

high-valuation type II customers is the same as in Case 1. Similar to Case 1, we consider three

cases, labeled Cases 2.1-2.3 based on the range of rH . Again, we will show that each of the three

cases generates a profit lower than max{VL, αVH}.

Case 2.1: VH ≥ rH ≥ λVH+µHrL+c

λ+µH
≥ λVH+µHrL

λ+µH
.

Customers’ purchase decisions are summarized in Figure E.12.

Since customers never purchase at the high price rH , it is impossible to obtain a profit higher

than rL = VL− c
µH

<VL.

Case 2.2: VH ≥ λVH+µHrL+c

λ+µH
≥ rH ≥ λVH+µHrL

λ+µH
.

Customers’ purchase decisions are summarized in Figure E.13.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =

λVH+µHrL+c

λ+µH
. The only remaining parameters are µH and µL. Let Φ2.2(µH , µL) denote the firm’s

profit per unit time. Then,

Φ2.2(µH , µL)
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Figure E.12 Customer Purchase Decisions in Case 2.1.

Figure E.13 Customer Purchase Decisions in Case 2.2.

=(1−α+ γ)
( µL
µH +µL

µH
λ+µH

+
µH

µH +µL

)
rL + (α− γ)

( µL
µH +µL

rH +
µH

µH +µL
rL

)
− 2mµHµL
µH +µL

=
µH

µH +µL
(VL−

c

µH
) + (1−α+ γ)

µL
µH +µL

µH
λ+µH

(VL−
c

µH
)

+ (α− γ)
µL

µH +µL

λVH +µH(VL− c
µH

) + c

λ+µH
− 2mµHµL
µH +µL

=VL−
c

µH
+

µL
µL +µH

[
(1−α+ γ)

µH
λ+µH

(VL−
c

µH
) + (α− γ)

λVH +µHVL
λ+µH

− (VL−
c

µH
)− 2mµH

]
.

It is impossible to obtain a profit higher than charging a static price VL if the term in the square

brackets is negative. Hereafter, we assume that the term in the brackets is positive.

To determine the optimal µH and µL, we solve the following optimization problem:

Φ2.2
∗ = max

µH≥0,µL≥0
Φ2.2(µH , µL).

First note that the objective function is increasing in µL, so µ∗
L =∞. It follows that

Φ2.2(µH ,∞) = (1−α+ γ)
µHVL− c
λ+µH

+ (α− γ)
λVH +µHVL
λ+µH

− 2mµH ,

=
µHVL + (α− γ)λVH − (1−α+ γ)c

λ+µH
− 2mµH

= VL +
(α− γ)λVH − (1−α+ γ)c−λVL

λ+µH
− 2mµH .
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If (α− γ)λVH − (1−α+ γ)c−λVL ≤ 0, then Φ2.2(µH ,∞)≤ VL− 2mµH <VL. Otherwise,

Φ2.2(µH ,∞)<VL +
(α− γ)λVH − (1−α+ γ)c−λVL

λ
− 2mµH

= (α− γ)VH − (1−α+ γ)
c

λ
− 2mµH

<αVH .

Case 2.3: VH ≥ λVH+µHrL+c

λ+µH
≥ λVH+µHrL

λ+µH
≥ rH .

Customers’ purchase decisions are summarized in Figure E.14.

Figure E.14 Customer Purchase Decisions in Case 2.3.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =

λVH+µHrL
λ+µH

. The only remaining parameters are µH and µL. Let Φ2.3(µH , µL) denote the firm’s profit

per unit time. Then,

Φ2.3(µH , µL)

=α
( µL
µH +µL

rH +
µH

µH +µL
rL

)
+ (1−α)

( µL
µH +µL

µH
λ+µH

+
µH

µH +µL

)
rL−

2mµHµL
µH +µL

=
µH

µH +µL
rL +α

µL
µH +µL

rH + (1−α)
µL

µH +µL

µH
λ+µH

rL−
2mµHµL
µH +µL

=
µH

µH +µL
(VL−

c

µH
) +α

µL
µH +µL

λVH +µHVL− c
λ+µH

+ (1−α)
µL

µH +µL

µH
λ+µH

(VL−
c

µH
)− 2mµHµL

µH +µL

=VL−
c

µH
+

µL
µL +µH

[
α
λVH +µHVL− c

λ+µH
+ (1−α)

µH
λ+µH

(VL−
c

µH
)− (VL−

c

µH
)− 2mµH

]
.

Again, if the term in the square brackets is negative, it is impossible to obtain a profit higher than

VL. Hereafter, we assume that the term in the brackets is positive.

To determine the optimal µH and µL, we solve the following optimization problem:

Φ2.3
∗ = max

µH≥0,µL≥0
Φ2.3(µH , µL).
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First note that the objective function is increasing in µL, so µ∗
L =∞. It follows that

Φ2.3(µH ,∞) = α
λVH +µHVL− c

λ+µH
+ (1−α)

µH
λ+µH

(VL−
c

µH
)− 2mµH

= αVH +
(VL−αVH)µH − c

λ+µH
− 2mµH .

We again show that the optimal profit is dominated by the profit under static pricing at VL or

VH . As a result, we can conclude that the high/low pricing strategy in this case is never optimal.

To see this, note that if (VL−αVH)µH− c≤ 0, then Φ2.3(µH ,∞)≤ αVH−2mµH <αVH . Otherwise,

Φ2.3(µH ,∞)<αVH +
(VL−αVH)µH − c

µH
− 2mµH = VL−

c

µH
− 2mµH ≤ VL.

This completes the proof of Case 2.

Combining the results for both cases establishes the lemma.

Proof of Proposition 1

Let’s consider the high/low pricing strategy under which the firm needs to choose five parameters,

rH , rL, µH , µL, and T . According to Lemma 3, it is never optimal to charge a low price rL different

than VL and VL− c
µH

. Therefore, we consider two cases.

Case 1: rL = VL.

According to Lemma 3, low-valuation type I customers purchase at the price rL but wait and

monitor when the price is rH . Meanwhile, low-valuation type II customers purchase at the price

rL but leave without a purchase at the price rH .

High-valuation type I customers purchase at both prices immediately if

VH ≥ rL +
(λ+µH)e−µHT (rH − rL)

λ
. (E.25)

Moreover, if the purchase is made at the price rH , they would keep monitoring the price until the

price guarantee is applied or expires. If (E.25) is not satisfied, they would purchase at the price rL

immediately and wait and monitor when the price is rH .8 Inequality (E.25) can be rewritten as

rH ≤ rL +
λ(VH − rL)

(λ+µH)e−µHT
.

High-valuation type II customers purchase immediately if

VH ≥ rL +
c

µH
+

(λ+µH)e−µHT (rH − rL− c
µH

)

λ
. (E.26)

8 Note that when c= 0, Lemma 3(b) does not exist.
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Moreover, if the purchase is made at the price rH , they would keep monitoring the price until the

price guarantee is applied or expires. If (E.26) is not satisfied, there are two possibilities. When

rL + c
µH
≤ VH < rL + c

µH
+

(λ+µH )e−µHT (rH−rL− c
µH

)

λ
, they would purchase at the price rL but wait

and monitor when the price is rH . When rL ≤ VH < rL + c
µH

, they would purchase at the price

rL but leave without a purchase when the price is rH . However, Lemma E.3(a) implies that the

high/low pricing strategy is not optimal in this case. Therefore, we restrict our attention to the

first possibility if (E.26) does not hold. Inequality (E.26) can be written as

rH ≤ rL +
c

µH
+
λ(VH − rL− c

µH
)

(λ+µH)e−µHT
.

From the conditions on rH , we can analyze the firm’s pricing problem based on the range of rH .

We consider four cases, labeled Cases 1.1-1.4. We will show each of the four cases generates a profit

lower than the profit from static pricing at either VL or VH .

Case 1.1: Suppose

rH > rL +
λ(VH − rL)

(λ+µH)e−µHT
,

rH > rL +
c

µH
+
λ(VH − rL− c

µH
)

(λ+µH)e−µHT
.

Then both high-valuation type I and high-valuation type II customers purchase at the price rL but

wait and monitor when the price is rH . The purchase decisions of customers can be summarized

in Figure E.15.

Figure E.15 Customer Purchase Decisions in Case 1.1.

Since customers never purchase at the price rH , it is impossible to obtain a profit higher than

rL = VL.

Case 1.2: Suppose

rH > rL +
λ(VH − rL)

(λ+µH)e−µHT
, (E.27)
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rH ≤ rL +
c

µH
+
λ(VH − rL− c

µH
)

(λ+µH)e−µHT
. (E.28)

Then high-valuation type I customers purchase at the price rL but wait and monitor when the

price is rH . Meanwhile, high-valuation type II customers purchase at both prices and monitor for

price guarantees if the purchase is made at the price rH . The purchase decisions of customers can

be summarized in Figure E.16.

Figure E.16 Customer Purchase Decisions in Case 1.2.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =

rL+ c
µH

+
λ(VH−rL− c

µH
)

(λ+µH )e−µHT
. The only remaining parameters are µH and µL. Let Φ1.2(µH , µL, T ) denote

the firm’s profit per unit time in this case. Then,

Φ1.2(µH , µL, T )

=β
( µH
µH +µL

rL +
µL

µH +µL

µH
λ+µH

rL

)
+ (α− γ)

( µH
µH +µL

rL +
µL

µH +µL
[(1− e−µHT )rL + e−µHT rH ]

)
+ (1−α−β+ γ)

µH
µH +µL

rL−
2mµHµL
µH +µL

=
µH

µH +µL
rL +β

µL
µH +µL

µH
λ+µH

rL + (α− γ)
µL

µH +µL
[(1− e−µHT )rL + e−µHT rH ]− 2mµHµL

µH +µL

=rL +
µL

µH +µL

{
β

µH
λ+µH

rL + (α− γ)[(1− e−µHT )rL + e−µHT rH ]− rL− 2mµH

}
=VL +

µL
µH +µL

{
β

µH
λ+µH

VL + (α− γ)
[λVH +µHVL

λ+µH
− (

λ

λ+µH
− e−µHT )

c

µH

]
−VL− 2mµH

}
.

If the term in the brackets is negative, then Φ1.2(µH , µL, T )<VL. Suppose the term is positive.

Note that Φ1.2(µH , µL, T ) is increasing in µL, so µ∗
L =∞. It follows that

Φ1.2(µH ,∞, T ) = β
µH

λ+µH
VL + (α− γ)

λVH +µHVL
λ+µH

− (α− γ)(
λ

λ+µH
− e−µHT )

c

µH
− 2mµH .

Note that (E.27) and (E.28) imply that e−µHT > λ
λ+µH

. Note also that Φ1.2(µH ,∞, T ) is decreasing

in T , so T ∗ = 0, and thus e−µHT
∗

= 1. It follows that

Φ1.2(µH ,∞,0) = β
µH

λ+µH
VL + (α− γ)

λVH +µHVL + c

λ+µH
− 2mµH .
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The remaining analysis is the same as Case 1.2 in the proof of Lemma E.5. In the end, we obtain

Φ1.2(µH ,∞,0)<max{VL, αVH}.

Case 1.3: Suppose

rH ≤ rL +
λ(VH − rL)

(λ+µH)e−µHT
,

rH > rL +
c

µH
+
λ(VH − rL− c

µH
)

(λ+µH)e−µHT
.

Then high-valuation type I customers purchase at both prices and monitor for price guarantees if

the purchase is made at the price rH . Meanwhile, high-valuation type II customers purchase at the

price rL but wait and monitor when the price is rH . The purchase decisions of customers can be

summarized in Figure E.17.

Figure E.17 Customer Purchase Decisions in Case 1.3.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =

rL + λ(VH−rL)
(λ+µH )e−µHT

. The only remaining parameters are µH and µL. Let Φ1.3(µH , µL, T ) denote the

firm’s profit per unit time in this case. Then,

Φ1.3(µH , µL, T )

=γ
( µH
µH +µL

rL +
µL

µH +µL
[(1− e−µHT )rL + e−µHT rH ]

)
+ (α+β− 2γ)

( µH
µH +µL

rL +
µL

µH +µL

µH
λ+µH

rL

)
+ (1−α−β+ γ)

µH
µH +µL

rL−
2mµHµL
µH +µL

=
µH

µH +µL
rL + γ

µL
µH +µL

[(1− e−µHT )rL + e−µHT rH ] + (α+β− 2γ)
µL

µH +µL

µH
λ+µH

rL−
2mµHµL
µH +µL

=rL +
µL

µH +µL

{
γ[(1− e−µHT )rL + e−µHT rH ] + (α+β− 2γ)

µH
λ+µH

rL− rL− 2mµH

}
=VL +

µL
µH +µL

{
γ
λVH +µHVL
λ+µH

+ (α+β− 2γ)
µH

λ+µH
VL−VL− 2mµH

}
.
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If the term in the brackets is negative, then Φ1.3(µH , µL, T )<VL. Suppose the term is positive.

Note that Φ1.3(µH , µL, T ) is increasing in µL, so µ∗
L =∞. It follows that

Φ1.3(µH ,∞, T ) = γ
λVH +µHVL
λ+µH

+ (α+β− 2γ)
µH

λ+µH
VL− 2mµH

= (α+β− γ)VL +
γλVH − (α+β− γ)λVL

λ+µH
− 2mµH .

If γλVH − (α+β− γ)λVL < 0, then Φ1.3(µH ,∞, T )< (α+β− γ)VL <VL. Otherwise,

Φ1.3(µH ,∞, T )< (α+β− γ)VL +
γλVH − (α+β− γ)λVL

λ
− 2mµH = γVH − 2mµH <αVH .

Case 1.4: Suppose

rH ≤ rL +
λ(VH − rL)

(λ+µH)e−µHT
, (E.29)

rH ≤ rL +
c

µH
+
λ(VH − rL− c

µH
)

(λ+µH)e−µHT
. (E.30)

Then both high-valuation type I and high-valuation type II customers purchase at both prices and

monitor for price guarantees if the purchase is made at the price rH . The purchase decisions of

customers can be summarized in Figure E.18.

Figure E.18 Customer Purchase Decisions in Case 1.4.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =

min
{
rL + λ(VH−rL)

(λ+µH )e−µHT
, rL + c

µH
+

λ(VH−rL− c
µH

)

(λ+µH )e−µHT

}
. The only remaining parameters are µH and µL.

Let Φ1.4(µH , µL, T ) denote the firm’s profit per unit time in this case. Then,

Φ1.4(µH , µL, T )

=α
( µH
µH +µL

rL +
µL

µH +µL
[(1− e−µHT )rL + e−µHT rH ]

)
+ (β− γ)

( µH
µH +µL

rL +
µL

µH +µL

µH
λ+µH

rL

)
+ (1−α−β+ γ)

µH
µH +µL

rL−
2mµHµL
µH +µL
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=
µH

µH +µL
rL +α

µL
µH +µL

[(1− e−µHT )rL + e−µHT rH ] + (β− γ)
µL

µH +µL

µH
λ+µH

rL−
2mµHµL
µH +µL

=rL +
µL

µH +µL

{
α[(1− e−µHT )rL + e−µHT rH ] + (β− γ)

µH
λ+µH

rL− rL− 2mµH

}
≤VL +

µL
µH +µL

{
α
µHVL +λVH
λ+µH

+ (β− γ)
µH

λ+µH
VL−VL− 2mµH

}
,

where the last inequality holds because rH ≤ VL + λ(VH−VL)
(λ+µH )e−µHT

.

If the term in the brackets is negative, then Φ1.4(µH , µL, T )<VL. Suppose the term is positive.

Note that Φ1.4(µH , µL, T ) is increasing in µL, so µ∗
L =∞. It follows that

Φ1.4(µH ,∞, T ) = α
µHVL +λVH
λ+µH

+ (β− γ)
µH

λ+µH
VL− 2mµH .

The remaining analysis is the same as Case 1.3 in the proof of Lemma E.5, establishing that

Φ1.4(µH ,∞, T )<max{VL, αVH}.

Case 2: rL = VL− c
µH

.

According to Lemma 3, low-valuation type II customers purchase at the price rL but wait and

monitor when the price is rH .

For low-valuation type I customers, there are two possibilities. If VL > rL + (λ+µH )e−µHT (rH−rL)
λ

,

they purchase at both prices and monitor for price guarantees if the purchase is made at the price

rH . However, Lemma E.3(b) shows that the high/low pricing strategy is not optimal in this case. If

VL ≤ rL + (λ+µH )e−µHT (rH−rL)
λ

, they purchase at the price rL but wait and monitor when the price

is rH . We will focus on the second possibility.

High-valuation type I customers purchase at both prices immediately if

VH ≥ rL +
(λ+µH)e−µHT (rH − rL)

λ
. (E.31)

Moreover, if the purchase is made at the price rH , they would keep monitoring the price until the

price guarantee is applied or expires. If (E.31) is not satisfied, they would purchase at the price rL

immediately and wait and monitor when the price is rH . Inequality (E.31) can be rewritten as

rH ≤ rL +
λ(VH − rL)

(λ+µH)e−µHT
.

High-valuation type II customers purchase immediately if

VH ≥ rL +
c

µH
+

(λ+µH)e−µHT (rH − rL− c
µH

)

λ
. (E.32)

Moreover, if the purchase is made at the price rH , they would keep monitoring the price until the

price guarantee is applied or expires. If (E.32) is not satisfied, they would purchase at the price rL

but wait and monitor when the price is rH . Inequality (E.32) can be written as

rH ≤ rL +
c

µH
+
λ(VH − rL− c

µH
)

(λ+µH)e−µHT
.



37

From the conditions on rH , we can analyze the firm’s pricing problem based on the range of rH .

We consider four cases, labeled Cases 2.1-2.4. We will show each of the four cases generates a profit

lower than max{VL, αVH}.

Case 2.1: Suppose

rH > rL +
λ(VH − rL)

(λ+µH)e−µHT
,

rH > rL +
c

µH
+
λ(VH − rL− c

µH
)

(λ+µH)e−µHT
.

Then both high-valuation type I and high-valuation type II customers purchase at the price rL but

wait and monitor when the price is rH . The purchase decisions of customers can be summarized

in Figure E.19.

Figure E.19 Customer Purchase Decisions in Case 2.1.

Since customers never purchase at the price rH , it is impossible to obtain a profit higher than

rL <VL.

Case 2.2: Suppose

rH > rL +
λ(VH − rL)

(λ+µH)e−µHT
,

rH ≤ rL +
c

µH
+
λ(VH − rL− c

µH
)

(λ+µH)e−µHT
.

Then high-valuation type I customers purchase at the price rL but wait and monitor when the

price is rH . Meanwhile, high-valuation type II customers purchase at both prices and monitor if

the purchase is made at the price rH . The purchase decisions of customers can be summarized in

Figure E.20.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =

rL + c
µH

+
λ(VH−rL− c

µH
)

(λ+µH )e−µHT
= VL + λ(VH−VL)

(λ+µH )e−µHT
. The only remaining parameters are µH and µL. Let

Φ2.2(µH , µL, T ) denote the firm’s profit per unit time in this case. Then,

Φ2.2(µH , µL, T )
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Figure E.20 Customer Purchase Decisions in Case 2.2.

=(α− γ)
( µH
µH +µL

rL +
µL

µH +µL
[(1− e−µHT )rL + e−µHT rH ]

)
+ (1−α+ γ)

( µH
µH +µL

rL +
µL

µH +µL

µH
λ+µH

rL

)
− 2mµHµL
µH +µL

=
µH

µH +µL
rL + (α− γ)

µL
µH +µL

[(1− e−µHT )rL + e−µHT rH ] + (1−α+ γ)
µL

µH +µL

µH
λ+µH

rL−
2mµHµL
µH +µL

=rL +
µL

µH +µL

{
(α− γ)[(1− e−µHT )rL + e−µHT rH ] + (1−α+ γ)

µH
λ+µH

rL− rL− 2mµH

}
=VL−

c

µH

+
µL

µH +µL

{
(α− γ)

[µHVL +λVH
λ+µH

− (1− e−µHT )
c

µH

]
+ (1−α+ γ)

µHVL− c
λ+µH

− (VL−
c

µH
)− 2mµH

}
.

If the term in the brackets is negative, then Φ2.2(µH , µL, T )<VL. Suppose the term is positive.

Note that Φ2.2(µH , µL, T ) is increasing in µL, so µ∗
L =∞. It follows that

Φ2.2(µH ,∞, T ) = (α− γ)
[µHVL +λVH

λ+µH
− (1− e−µHT )

c

µH

]
+ (1−α+ γ)

µHVL− c
λ+µH

− 2mµH

≤ (α− γ)
µHVL +λVH
λ+µH

+ (1−α+ γ)
µHVL− c
λ+µH

− 2mµH .

The remaining analysis is the same as Case 2.2 in the proof of Lemma E.5. Therefore, we obtain

Φ2.2(µH ,∞, T )<max{VL, αVH}.

Case 2.3: Suppose

rH ≤ rL +
λ(VH − rL)

(λ+µH)e−µHT
,

rH > rL +
c

µH
+
λ(VH − rL− c

µH
)

(λ+µH)e−µHT
.

Then high-valuation type I customers purchase at both prices and monitor for price guarantees if

the purchase is made at the price rH . Meanwhile, high-valuation type II customers purchase at the

price rL but wait and monitor when the price is rH . The purchase decisions of customers can be

summarized in Figure E.21.
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Figure E.21 Customer Purchase Decisions in Case 2.3.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =

rL + λ(VH−rL)
(λ+µH )e−µHT

= VL + c
µH

+
λ(VH−VL− c

µH
)

(λ+µH )e−µHT
. The only remaining parameters are µH and µL. Let

Φ2.3(µH , µL, T ) denote the firm’s profit per unit time in this case. Then,

Φ2.3(µH , µL, T )

=γ
( µH
µH +µL

rL +
µL

µH +µL
[(1− e−µHT )rL + e−µHT rH ]

)
+ (1− γ)

( µH
µH +µL

rL +
µL

µH +µL

µH
λ+µH

rL

)
− 2mµHµL
µH +µL

=
µH

µH +µL
rL + γ

µL
µH +µL

[(1− e−µHT )rL + e−µHT rH ] + (1− γ)
µL

µH +µL

µH
λ+µH

rL−
2mµHµL
µH +µL

=rL +
µL

µH +µL

{
γ[(1− e−µHT )rL + e−µHT rH ] + (1− γ)

µH
λ+µH

rL− rL− 2mµH

}
=VL−

c

µH
+

µL
µH +µL

{
γ
λVH +µHVL− c

λ+µH
+ (1− γ)

µHVL− c
λ+µH

− (VL−
c

µH
)− 2mµH

}
.

If the term in the brackets is negative, then Φ2.3(µH , µL, T ) < VL. Suppose the term is positive.

Note that Φ2.3(µH , µL, T ) is increasing in µL, so µ∗
L =∞. It follows that

Φ2.3(µH ,∞, T ) = γ
λVH +µHVL− c

λ+µH
+ (1− γ)

µHVL− c
λ+µH

− 2mµH

= VL +
γλVH −λVL− c

λ+µH
− 2mµH .

If γλVH −λVL− c < 0, then Φ2.3(µH ,∞, T )< (α+β− γ)VL <VL. Otherwise,

Φ2.3(µH ,∞, T )<VL +
γλVH −λVL− c

λ
− 2mµH <γVH − 2mµH <αVH .

Case 2.4: Suppose

rH ≤ rL +
λ(VH − rL)

(λ+µH)e−µHT
,

rH ≤ rL +
c

µH
+
λ(VH − rL− c

µH
)

(λ+µH)e−µHT
.
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In this case, both high-valuation type I and high-valuation type II customers purchase at both

prices and monitor for price guarantees if the purchase is made at the price rH . The purchase

decisions of customers can be summarized in Figure E.22.

Figure E.22 Customer Purchase Decisions in Case 2.4.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =

min
{
rL + λ(VH−rL)

(λ+µH )e−µHT
, rL + c

µH
+

λ(VH−rL− c
µH

)

(λ+µH )e−µHT

}
. The only remaining parameters are µH and µL.

Let Φ2.4(µH , µL, T ) denote the firm’s profit per unit time in this case. Then,

Φ2.4(µH , µL, T )

=α
( µH
µH +µL

rL +
µL

µH +µL
[(1− e−µHT )rL + e−µHT rH ]

)
+ (1−α)

( µH
µH +µL

rL +
µL

µH +µL

µH
λ+µH

rL

)
− 2mµHµL
µH +µL

=
µH

µH +µL
rL +α

µL
µH +µL

[(1− e−µHT )rL + e−µHT rH ] + (1−α)
µL

µH +µL

µH
λ+µH

rL−
2mµHµL
µH +µL

=rL +
µL

µH +µL

{
α[(1− e−µHT )rL + e−µHT rH ] + (1−α)

µH
λ+µH

rL− rL− 2mµH

}
≤VL−

c

µH
+

µL
µH +µL

{
α
µHVL +λVH − c

λ+µH
+ (1−α)

µHVL− c
λ+µH

− (VL−
c

µH
)− 2mµH

}
,

where the last inequality holds because rH ≤ VL− c
µH

+
λ(VH−VL− c

µH
)

(λ+µH )e−µHT
. The remaining analysis is the

same as Case 2.3 in the proof of Lemma E.5. Therefore, we have Φ2.4(µH ,∞, T )<max{VL, αVH}.

This completes the proof of Proposition 1.
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Online Supplement for
“Markovian Pricing with Price Guarantees”

Jianghua Wu, Dan Zhang, Yan Liu

This online supplement provides supplemental materials for the paper and includes four sections:

• Section S.1 provides a detailed analysis under the assumption that a purchased customer stops

monitoring for price refund when her lifetime ends.

• Section S.2 considers an extension where customers are heterogeneous in their lifetime.

• Section S.3 considers a non-zero monitoring cost for type I customers as a robustness check

for our main results.

• Section S.4 provides proofs of the results in Sections S.1-S.3.

S.1. An Alternative Assumption on Customers’ Monitoring Behavior

In the base model, we interpret customers’ lifetime as their interest in the product. Once a customer

makes a purchase, her lifetime does not matter anymore. Under this assumption, a purchased

customer who decides to monitor for price refund keeps monitoring until the price guarantee applies

or expires. Alternatively, one may interpret customers’ lifetime as a patience parameter. Under this

alternative interpretation, a customer who purchases at a high price may stop monitoring when

her lifetime ends (her patience runs out) before the price guarantee expires. This section provides

the results when we adopt such an alternative assumption, where a customer stops monitoring for

price refund when the price guarantee expires or her lifetime ends, whichever occurs earlier. We

find that our main results and insights still hold qualitatively and are therefore robust under the

alternative assumption.

S.1.1 Customer’s Decision Problem

Before writing down the decision problem for the customer as a dynamic program, we first derive

the expected surplus if the customer chooses to purchase immediately at price rH and then monitor

the price until the price guarantee expires or her lifetime ends, as shown in the following lemma.

Lemma S.1. If the customer purchases at price rH and then monitors the price until the price

guarantee expires or her lifetime ends, then her expected surplus, denoted by M , is

M = v− rH + (1− e−µHT )
{
e−λT (rH − rL)− c

µH +λ

}
+ (1− e−λT )

µH(rH − rL)− c
µH +λ

.

When the price is rH , let X be the amount of time before the price is switched to rL and Y be

the amount of the customer’s lifetime in the market before she leaves. Then, X and Y follow an

exponential distribution with rate µH and λ, respectively. A customer purchasing at the price rH
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earns an immediate surplus v − rH . If the customer chooses to monitor the price after purchase,

she may get a refund of rH − rL in case the price drops before the guarantee expires and her

lifetime ends (X ≤min{T,Y }) but incur a price monitoring cost c ·min{X,T,Y }. Therefore, her

total expected surplus is

v− rH + (rH − rL) ·P (X ≤min{T,Y })− c ·E[min{X,T,Y }],

which leads to the expected surplus shown in Lemma S.1.

Let G(·) be the value function, which denotes the maximum surplus earned by the customer.

Then, the dynamic program can be formulated as

G(rH) = max
{
v− rH ,M,

µL
ν
G(rH) +

µH
ν
G(rL)− c

ν
,0
}
, (S.1)

G(rL) = max
{
v− rL,

µL
ν
G(rH) +

µH
ν
G(rL)− c

ν
,0
}
. (S.2)

Equations (S.1) and (S.2) are very similar to the dynamic program in the base model. The only

difference is the expected surplus when the customer chooses to purchase immediately and then

monitor for price refund in equation (S.1).

Lemmas S.2 and S.3 provide the optimal solution to the dynamic program in equations (S.1)

and (S.2) and characterize the customer’s optimal purchase strategy for a type II customer with

parameters (v, c). The two lemmas consider cases with a high and a low price monitoring cost,

respectively.9

To simplify the notations, we let

c1(rH , rL, µH , T ) =
(1− e−λT )µH + e−λT (λ+µH)(1− e−µHT )

2− e−λT − e−µHT
(rH − rL),

c2(rH , rL, µH , T ) =
λµH(1− e−λT ) + e−µHTµH(λ+µH)e−λT

λ−µH(1− e−λT − e−µHT )
(rH − rL),

v̄(rH , rL, µH , T, c) = rH + (rH − rL)
e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
+ (1− e−λT − e−µHT )

c

λ
.

Lemma S.2 (Optimal purchase decisions when the price monitoring cost is high). Consider

a type II customer with parameters (v, c) where c > c1(rH , rL, µH , T ). The optimal solution to equa-

tions (S.1)–(S.2) and the optimal purchase strategy of the customer are as follows:

(a) If v < rL, then G(rH) =G(rL) = 0 and the customer never purchases;

(b) If rL ≤ v < rH , then G(rH) = 0, G(rL) = v − rL, and the customer purchases upon arrival

when the price is rL, but leaves immediately without a purchase when the price is rH ;

9 There is a third case with an intermediate price monitoring cost. The result is summarized in Lemma S.5 and
relegated to Section S.4.1.
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(c) If v ≥ rH , then G(rH) = v − rH and G(rL) = v − rL. The customer purchases immediately

upon arrival.

Lemma S.3 (Optimal purchase decisions when the price monitoring cost is low). Consider

the purchase decisions for a type II customer with parameters (v, c) where either (i) c ≤

c1(rH , rL, µH , T ) and µH ≥ (λ+µH)e−λT , or (ii) c≤ c2(rH , rL, µH , T ) and µH < (λ+µH)e−λT . The

optimal solution to equations (S.1)–(S.2) and the optimal purchase decision are given as follows:

(a) If v < rL, then G(rH) =G(rL) = 0; the customer never purchases and the price guarantee is

never used;

(b) If rL ≤ v < rL + c
µH

, then G(rH) = 0, G(rL) = v − rL; the customer purchases immediately

upon arrival at the price rL, but leaves without a purchase if the price is rH . The price guarantee

is never used;

(c) If rL + c
µH
≤ v < v̄(rH , rL, µH , T, c), then

G(rH) =
µH(v− rL)− c

λ+µH
, G(rL) = v− rL.

The customer purchases immediately upon arrival when the price is rL. When the price is rH , the

customer would wait for the price rL until she leaves the market. The price guarantee is never used;

(d) If v≥ v̄(rH , rL, µH , T, c), then

G(rH) =M, G(rL) = v− rL.

The customer purchases immediately upon arrival. If the purchase is made at the price rH , she

would keep monitoring the price until the price guarantee is applied/expired or her lifetime ends.

(a)When the monitoring cost is high (b)When the monitoring cost is low

Figure S.1 A Type II Customer’s Optimal Purchase Strategy with Price Guarantees.

Lemmas S.2 and S.3 are very similar to Lemmas 2 and 3 in the main text. Observe that the upper

end of the range in Lemma S.3(c), v̄(rH , rL, µH , T, c), may be above rH . Consider two scenarios:

one is when there are no price guarantees, i.e., T = 0, v̄(rH , rL, µH , T, c) = rH + µH (rH−rL)−c
λ

> rH

because c≤ c2(rH , rL, µH , T ) = µH(rH−rL). The other scenario is when there is no expiration term
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for price guarantees, i.e, T =∞, in which case v̄(rH , rL, µH , T, c) = rH + c
λ
> rH . This means that,

similar to Lemma 3, a type II customer with a valuation between rH and v̄(rH , rL, µH , T, c) may

eventually leave without a purchase even though the price rH is acceptable to her.

What is the average revenue contribution of a type II customer? Here, we only focus on

Lemma S.3(d) because the other cases are the same as those in the main text. In Lemma S.3(d), the

customer always purchases at the current price. However, the customer will be refunded the price

difference if the price guarantee is applied. According to the solution of G(rH) in Lemma S.3(d), the

price minus the expected refund claimed by a customer who purchases at the high price, denoted

by E[pG], is

E[pG] =rH −
[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
(rH − rL)

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]
rH +

[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
rL,

where (1− e−µHT )e−λT + (1− e−λT ) µH
λ+µH

is the probability that the firm offers a sale before the

price guarantee expires and her lifetime ends, in which case she receives the refund and her revenue

contribution is rL. Taking into account the stationary probabilities of the price, the total revenue

is
µL

µH +µL
·E[pG] +

µH
µH +µL

· rL.

Next, we analyze the firm’s optimal Markovian pricing strategy with price guarantees. Note

that when a price guarantee is not offered, the above model reduces to the one without price

guarantees in the main text. For example, one can verify that by taking T = 0 in Lemmas S.2 and

S.3, customers’ optimal purchase strategy is the same as that in Lemmas 2 and E.4. Therefore,

the firm’s optimal Markovian pricing strategy without price guarantees is also the same as that in

Proposition 4.

S.1.2 The Optimal Markovian Pricing Strategy with Price Guarantees

Our analysis in Section S.1.1 indicates that type II customers monitor the price after they purchase

at the high price if the monitoring cost is low, and do not monitor otherwise; type I customers

always monitor the price because their monitoring cost is zero. We first analyze the firm’s problem

when the monitoring cost for type II customers is low. The result is summarized in Proposition S.8.

Proposition S.8. If the monitoring cost c is low (as stated in Lemma S.3) such that type II

customers who purchase at the high price monitor the price after purchase, then the high/low

pricing with price guarantees cannot improve firm profit over static pricing.10

10 If the monitoring cost for type II customers is intermediate (as stated in Lemma S.5) such that they monitor the
price after purchasing at the high price, we also show that offering price guarantees cannot improve firm profit. The
result is summarized in Proposition S.15 and relegated to Section S.4.1.
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Similar to the result in the main text, if type II customers monitor the price after purchasing at

a high price, then offering price guarantees cannot improve firm profit.

Next, we analyze the firm’s pricing problem when the monitoring cost is high (c >

c1(rH , rL, µH , T )) such that type II customers do not monitor the price after they purchase at

the price rH . That is, only type I customers take advantage of the price guarantee. The result is

summarized in Proposition S.9 below.

Proposition S.9 (The optimal Markovian pricing strategy for a high monitoring cost).

Suppose the monitoring cost c is high (c > c1(rH , rL, µH , T )) such that type II customers do not

monitor the price after they purchase at the price rH . If K ≤ 2mλ, then the firm’s optimal pricing

strategy reduces to that without price guarantees in the base model. If K > 2mλ, there are three

possible outcomes for the firm’s optimal pricing strategy:

(i) Static pricing at VH. The firm prices at VH . All high-valuation customers purchase imme-

diately and all low-valuation customers leave without a purchase. The profit per unit time is αVH ;

(ii) Static pricing at VL. The firm prices at VL. All customers purchase immediately. The

profit per unit time is VL;

(iii) High/low pricing with price guarantees. Only if

c >
λ

2

(√
K

2mλ
− 1

)
(VH −VL), (S.3)

the firm uses a Markovian pricing strategy with price guarantees where

rB,∗H = VH , rB,∗L = VL, T ∗ =∞, µB,∗H = λ

(√
K

2mλ
− 1

)
, µB,∗L =∞.

The profit per unit time is

ΦB,∗ = (α− γ)VH + (β− γ)

(
1−

√
2mλ

K

)
VL + γ

[(
1−

√
2mλ

K

)
VL +

√
2mλ

K
VH

]

− 2mλ

(√
K

2mλ
− 1

)
. (S.4)

All high-valuation customers purchase immediately at both prices; in particular, high-valuation type

I customers try to take advantage of price guarantees by monitoring the price after purchase, while

high-valuation type II customers leave immediately after purchase; low-valuation type I customers

either purchase immediately at price VL or wait for the price VL; and low-valuation type II customers

purchases immediately at VL and leave without a purchase at VH .
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Observe that the firm’s optimal Markovian pricing strategy and the corresponding customer

behavior are almost the same as that in Proposition 2 in the base model. There are only two

differences. One is the cutoff on the threshold of c. The threshold in condition (S.3) is lower than

that in condition (5), implying that the high/low pricing strategy is valid for a broader parameter

range under the alternative assumption. This can be explained as follows. Recall that the high/low

pricing strategy is optimal only if c is large enough such that type II customers do not monitor

for price refund. Under the alternative assumption, customers stop monitoring whenever their

lifetime ends, making it less likely for customers to receive the price refund, compared to the base

model where customers keep monitoring until the price guarantee expires. In other words, type II

customers are less willing to purchase and monitor under the alternative assumption. Therefore,

the monitoring cost c does not have to be as large as that in the base model.

The other difference is the optimal expiration term of the price guarantee. Proposition S.9 shows

that the optimal guarantee duration is set to infinity under the alternative assumption. This means

that the probability of getting the refund is equal to the probability that the price switches to rL

before the customer’s lifetime ends ( µH
λ+µH

). Note that this result is derived under the alternative

assumption that customers stop monitoring for price refund when their lifetime ends. Recall that

in the base model, customers keep monitoring the price until the price guarantee expires, and

the optimal guarantee duration is set to a finite value such that the probability of getting the

refund (1− eµHT∗
, which is the probability that the price switches to rL before the price guarantee

expires) is also equal to the probability that the price switches to rL before their lifetime ends

( µH
λ+µH

). That is, under either assumption, the expiration term is set to make the probability of

getting the refund equal to the probability that the price switches to rL before the customer’s

lifetime ends. Importantly, the pricing strategy (rH , rL, µH , µL), the firm’s optimal revenue, and

the corresponding customer behavior are the same under the alternative and original assumptions.

This indicates that our main results and insights are robust against the assumption of whether

customers keep or stop monitoring the price when their lifetime ends.

S.2. Heterogeneity in Lifetimes

This section considers an extension where customers are heterogeneous in their lifetime. We assume

that type I and type II customers’ lifetimes follow an exponential distribution with rate λ1 = 0

and λ2 = λ > 0, respectively. This means that type I customers have an infinite lifetime in the

market, whereas type II customers are short-lived with a limited lifetime. For tractability, we

remove customers’ heterogeneity in price monitoring costs by assuming a homogeneous monitoring

cost c > 0. Hence, customers differ in two dimensions: production valuation and lifetime duration.
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Figure S.2 The Four Customer Segments.

Similar to the base model, we assume that a proportion γ of all customers are high-valuation

type I customers. Consequently, α− γ (β − γ, 1− α− β + γ) proportion are high-valuation type

II (low-valuation type I, low-valuation type II) customers. Figure S.2 illustrates the four customer

segments. This setting allows us to analyze the implications of customer lifetime differences on the

firm’s optimal pricing strategies and the effectiveness of price guarantees.

For a type II customer with parameter (v, λ), the dynamic program is the same as (2) and

(3) in the base model. We assume the price monitoring cost for both types of customers is low

such that c≤ µH(rH − rL). Otherwise, both types of customers would behave myopically as stated

in Lemma 2, which makes the problem trivial. As a result, the optimal purchase decision for a

type II customer is the same as in Lemma E.4 (without price guarantees) and Lemma 3 (with

price guarantees). Thus, it suffices to focus on analyzing the optimal purchase decision of a type I

customer. Let J(·) be the value function, which denotes the maximum surplus earned by a type I

customer. Then, the dynamic program can be formulated as

J(rH) = max{v− rH , v− rH + (1− e−µHT )(rH − rL−
c

µH
),

µL
µH +µL

J(rH) +
µH

µH +µL
J(rL)− c

µH +µL
,0},

(S.5)

J(rL) = max{v− rL,0}. (S.6)

The expressions for J(rH) and J(rL) are the same as (2) and (3) with λ= 0 in the base model.

Lemma S.4. Consider the purchase decisions for a type I customer with parameter (v,c) where

c ≤ µH(rH − rL). The optimal solution to equations (S.5) and (S.6) and the optimal purchase

decisions are given as follows:

(a) If v < rL, then J(rH) = J(rL) = 0; the customer never purchases and the price guarantee is

never used;

(b) If rL ≤ v < rL+ c
µH

, then J(rH) = 0 and J(rL) = v− rL; the customer purchases immediately

upon arrival at the price rL, but leaves without a purchase if the price is rH . The price guarantee

is never used;
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(c) If v ≥ rL + c
µH

, then J(rH) = v − rL − c
µH

and J(rL) = v − rL. The customer purchases

immediately upon arrival when the price is rL. When the price is rH , the customer will wait for

the price rL. The price guarantee is never used.

Lemma S.4 characterizes the optimal purchase strategy for a type I customer. Compared to a

type II customer, a type I customer will never purchase at the high price rH and then monitor for

a price refund. This is because a type I customer, who has an infinite lifetime in the market, is

guaranteed to eventually obtain the product at the low price. In contrast, if a purchase is made at

the high price, there is a chance that the customer cannot receive the price refund due to the limited

duration of the price guarantee. Hence, it is never optimal for a type I customer to utilize price

guarantees. Given that price guarantees have no effect on type I customers’ purchase decisions,

Lemma S.4 fully characterizes the optimal purchase strategy for a type I customer, regardless of

whether the firm offers price guarantees or not.

We first analyze the firm’s optimal Markovian pricing strategy without price guarantees. Given

customers’ optimal purchase decisions, the firm optimizes its Markovian pricing strategy by choos-

ing the parameters rH , rL, µH , and µL. The result is summarized in the following proposition.

Proposition S.10 (The optimal Markovian pricing strategy without price guarantees).

There are three possible outcomes for the firm’s optimal Markovian pricing strategy:

(i) Static pricing at VH. The firm prices at VH . All high-valuation customers purchase imme-

diately and all low-valuation customers leave without a purchase. The profit per unit time is αVH ;

(ii) Static pricing at VL. The firm prices at VL. All customers purchase immediately. The

profit per unit time is VL;

(iii) High/low pricing with flash sales. Only if

(α− γ)VH > (1−β)VL, (S.7)

the firm uses a Markovian pricing strategy where

r∗H =
λVH +µ∗

HVL
λ+µ∗

H

, r∗L = VL−
c

µ∗
H

, µ∗
L =∞,

and µ∗
H is the optimal solution to the following problem

Φ∗ = max
µH

β(VL−
c

µH
) + (α− γ)

λVH +µHVL
λ+µH

+ (1−α−β+ γ)
µH

λ+µH
(VL−

c

µH
)− 2mµH . (S.8)

All type I and low-valuation type II customers either purchase immediately at the price rL or wait

for the price rL; and high-valuation type II customers purchase immediately at both prices.
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In general, the profit function (S.8) is not concave in µ, so it is not straightforward to obtain the

expressions of µ∗ and the corresponding profit Φ∗. However, the optimal pricing strategy is still

either static pricing or high/low pricing with flash sales, with a structure very similar to that in the

base model (see Proposition 4). The optimal pricing strategy can be obtained by comparing the

profits in the three cases. In the high/low pricing strategy, the firm always charges a high price r∗H

(between VH and VL), except for occasional price drops to VL− c
µ∗
H

. At optimality, both type I and

low-valuation type II customers either purchase immediately at price VL− c
µ∗
H

or wait for the price

drop when the current price is rH . Although the two customer segments behave in the same way,

their purchase probabilities are different. Equation (S.8) shows that type I customers purchase at

the low price with a probability of 1, whereas low-valuation type II customers purchase at the low

price with a probability of
µ∗H

µ∗
H
+λ

, which is less than 1. This is because type I customers have an

infinite lifetime in the market and are guaranteed to encounter the price drop if they choose to

wait, while low-valuation type II customers have a limited lifetime and may exit the market during

the waiting period. High-valuation type II customers always purchase immediately at both prices.

According to the observed behavior of type I and type II customers, it is never optimal for the

firm to charge a low price rL that is different from VL and VL− c
µ∗
H

. We show that the firm’s profit

when rL = VL is always lower than static pricing at either VH or VL. The key insight is that the low

price is only offered occasionally, so the low-valuation customers have to wait for the price drop if

they wish to make a purchase. However, all customers incur a monitoring cost c in this new setting.

If the firm charges rL = VL, then no low-valuation customers would make a purchase, leading to a

profit lower than static pricing at VH . To induce low-valuation customers to purchase at the low

price, the firm has to take into account the expected monitoring cost c
µ∗
H

when deciding the low

price. This explains why the optimal low price is set to VL− c
µ∗
H

, instead of VL.

High/low pricing can be beneficial to the firm because it allows the firm to discriminate against

customers based on their lifetime duration. Type I customers only purchase at the low price,

whereas high-valuation type II customers purchase at both the high and low prices. Since the low

price is offered only occasionally, the effective price paid by high-valuation type II customers is

predominantly the high price. The low-valuation type II customers also contribute to the firm’s

revenue, as they purchase at the low price rL and wait for the price drop at the high price rH .

This is different from the base model, where low-valuation type II customers essentially do not

contribute to the firm’s revenue because the low price rL is rarely offered and they only purchase at

rL and leave immediately at rH . Therefore, under the high/low pricing strategy, all four customer

segments contribute to the firm’s revenue. Compared to static pricing at VL, where all customers
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purchase at the same price VL, the high/low pricing strategy results in type I and low-valuation

type II customers paying a relatively lower price of VL− c
µ∗
H

, while high-valuation type II customers

pay a higher price than VL. Hence, the profitability of high/low pricing over static pricing at VL

depends on the fraction of high-valuation type II customers. Only if this segment accounts for a

large enough proportion would the high/low pricing lead to higher revenue than static pricing at

VL. This is similar to the insight from the base model, where the profitability of high/low pricing

also depends on the correlation between valuation and lifetime.

Proposition S.11. If γ ≥ αβ, then the high/low pricing strategy with flash sales is no more

profitable than static pricing.

(a)ρ= 0 (b)ρ=−0.5 (c)ρ=−0.9

Figure S.3 The Firm’s Optimal Pricing Strategy under Heterogeneous Lifetimes.

To help explain Proposition S.11, we conduct a set of numerical experiments to compare the

three pricing strategies. We set (α,β,VH , c,m) = (0.5,0.5,1,0.005,0.005) and vary VL from 0 to 1

and λ from 0 to 0.15. The three subfigures correspond to the three levels of correlation between

the valuation and lifetime duration: 0 (no correlation), and -0.5 (moderately negative correlation),

-0.9 (highly positive correlation). The horizontal axis is VL/VH and the vertical axis is λ. The ratio

VL/VH can be interpreted as a measure of valuation homogeneity, whereas λ can be interpreted

as a measure of lifetime heterogeneity. Figure S.3(a) shows that when the correlation coefficient ρ

is zero, the firm does not benefit from high/low pricing. Figures S.3(b) and (c) show that as the

correlation becomes more negative, the firm is more likely to offer high/low pricing. One difference

compared to Figure 6 in the base model is that in Figure S.3, the larger the value of λ, the more

likely the firm will offer the high/low pricing strategy. This is because, in this new setting, the

profitability of the high/low pricing strategy lies in its ability to allow the firm to discriminate

against customers based on their lifetime duration. Recall that λ= 0 for type I customers, so the
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larger the value of λ for type II customers, the more heterogeneous the two customer types are in

terms of their lifetime duration.

Next, we analyze the firm’s optimal Markovian pricing strategy with price guarantees and com-

pare it to the strategy without price guarantees. This allows us to investigate the effectiveness of

price guarantees in this new setting. Surprisingly, we find that the optimal duration of the price

guarantee is equal to 0. In other words, price guarantees cannot improve the firm’s revenue in this

new setting with heterogeneous customer lifetime duration. This result contrasts with the findings

from the base model, where price guarantees are shown to be an effective tool for the firm to

increase its revenue. The difference highlights how the presence of customer lifetime heterogeneity

can fundamentally alter the effectiveness of price guarantees.

Proposition S.12. When customers are heterogeneous in product valuation and lifetime dura-

tion, offering price guarantees cannot improve the firm’s revenue, compared to that without price

guarantees.

(a) Without Price Guarantees (b) With Price Guarantees

Figure S.4 Customer Behavior under the Optimal Markovian Pricing Strategy with and without Price Guaran-

tees.

To understand Proposition S.12, we compare customers’ purchase strategies under the optimal

Markovian pricing strategy with and without price guarantees, as illustrated in Figure S.4. As

discussed previously, price guarantees have no effect on type I customers’ purchase strategy. There-

fore, only the purchase behavior of high-valuation type II customers is affected by the presence

of price guarantees. Without price guarantees, high-valuation type II customers purchase imme-

diately at both the high and low prices. With price guarantees, they still purchase immediately

at both prices, but would monitor for a potential price refund if their purchase was made at the

high price. However, this change in customer behavior does not benefit the firm. Any price refunds

issued by the firm would ultimately harm its revenue. From the firm’s perspective, the optimal

purchase strategy for high-valuation type II customers is to purchase immediately at both prices,
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Figure S.5 The Four Customer Segments.

without the need for price guarantees. Offering price guarantees would induce this segment of cus-

tomers to monitor for potential refunds, which eventually hurts the firm’s revenue. Therefore, in

this new setting with heterogeneous customer lifetimes, providing price guarantees cannot improve

the firm’s revenue. Proposition S.12 implies that the driver of the effectiveness of price guarantees

under the Markovian pricing is the heterogeneity in customers’ monitoring costs, instead of the

heterogeneity in lifetimes.

S.3. Non-zero Monitoring Cost for Type I customers

The base model assumes a zero monitoring cost for type I customers. To check the robustness of

our main results, this section considers the case of a non-zero monitoring cost for type I customers.

Assume the monitoring cost is c1 for type I customers and c2 for type II customers, where 0< c1 <

c2. Figure S.5 illustrates the four customer segments.

We restrict our attention to the case where c1 ≤ µH(rH − rL) < c2. This is because otherwise,

i.e., if c1 < c2 ≤ µH(rH − rL) or µH(rH − rL)< c1 < c2, the two types of customers would behave

identically. In such cases, the high/low pricing strategy cannot effectively differentiate between the

two customer types. The following two propositions characterize the optimal Markovian pricing

strategy without and with price guarantees, respectively.

Proposition S.13 (The optimal Markovian pricing strategy without price guarantees).

There are three possible outcomes for the firm’s optimal Markovian pricing strategy:

(i) Static pricing at VH. The firm prices at VH . All high-valuation customers purchase imme-

diately and all low-valuation customers leave without a purchase. The profit per unit time is αVH ;

(ii) Static pricing at VL. The firm prices at VL. All customers purchase immediately. The

profit per unit time is VL;

(iii) High/low pricing with flash sales. Only if

β(λVL + c1)> 2mλ2, (S.9)

c2 >
(√β(λVL + c1)

2m
−λ
)

(VH −VL) + c1, (S.10)



13

the firm uses a Markovian pricing strategy where

r∗H = VH , r∗L = VL−
c1
µ∗
H

, µ∗
H =

√
β(λVL + c1)

2m
−λ, µ∗

L =∞.

The profit per unit time is

Φ∗ = (α− γ)VH +β

(
VL−

√
2m(λVL + c1)

β

)
− 2m

(√
β(λVL + c1)

2m
−λ

)
. (S.11)

All type I customers either purchase immediately at the price rL or wait for the price rL; high-

valuation type II customers purchase immediately at both prices; and low-valuation type II cus-

tomers purchase at the price rL but leave without a purchase at the price rH .

Proposition S.14 (The optimal Markovian pricing strategy with price guarantees). If

λK + βc1 ≤ 2mλ2, then the firm’s optimal pricing strategy reduces to that without price guaran-

tees. If λK+βc1 > 2mλ2, then there are three possible outcomes for the firm’s optimal Markovian

pricing strategy:

(i) Static pricing at VH. The firm prices at VH . All high-valuation customers purchase imme-

diately and all low-valuation customers leave without a purchase. The profit per unit time is αVH ;

(ii) Static pricing at VL. The firm prices at VL. All customers purchase immediately. The

profit per unit time is VL;

(iii) High/low pricing with price guarantees. Only if

c2 >
(√λK +βc1

2m
−λ
)

(VH −VL) + c1 (S.12)

the firm uses a Markovian pricing strategy where

r∗H = VH , r∗L = VL−
c1
µ∗
H

, T ∗ =
1√

λK+βc1
2m

−λ
ln

√
K +βc1/λ

2mλ
, µ∗

H =

√
λK +βc1

2m
−λ, µ∗

L =∞.

The profit per unit time is

Φ∗ =(α− γ)VH + (β− γ)

1− λ√
λK+βc1

2m

VL− c1√
λK+βc1

2m
−λ


+ γ

1− λ√
λK+βc1

2m

VL− c1√
λK+βc1

2m
−λ

+
λ√

λK+βc1
2m

VH

− 2m
(√λK +βc1

2m
−λ
)
.

(S.13)

All type I customers either purchase immediately at the price rL or wait for the price rL; high-

valuation type II customers purchase immediately at both prices; and low-valuation type II cus-

tomers purchase at the price rL but leave without a purchase at the price rH .
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One can verify that if c1 = 0 and c2 = c, the optimal high/low pricing strategy without/with price

guarantees reduces to that of the base model. Propositions S.13 and S.14 confirm the robustness

of our main results against the inclusion of a non-zero monitoring cost for type I customers. This

suggests that the key insights derived in the base model continue to hold even when the assumption

of zero monitoring cost for type I customers is relaxed.

S.4. Proofs of Lemmas and Propositions in Sections S.1-S.3

S.4.1 Proofs of Lemmas and Propositions in Section S.1

Proof of Lemma S.1

According to the discussion immediately after Lemma S.1, we have

M = v− rH + (rH − rL) ·P
(
X ≤min

{
T,Y

})
− c ·E

[
min

{
X,T,Y

}]
. (S.14)

Note that

P
(
X ≤min

{
T,Y

})
=P
(
X ≤min

{
T,Y

}
|Y = min

{
T,Y

})
·P
(
Y = min

{
T,Y

})
+P

(
X ≤min

{
T,Y

}
|T = min

{
T,Y

})
·P
(
T = min

{
T,Y

})
=P (X ≤ Y ) ·P (Y ≤ T ) +P (X ≤ T ) ·P (Y > T )

=
µH

µH +λ
(1− e−λT ) + (1− e−µHT )e−λT , (S.15)

where the last equality holds because X and Y follow exponential distributions with rate µH and

λ, respectively, and T is a constant.

Note also that

E
[

min
{
X,T,Y

}]
=E
[

min
{

min{X,Y }, T
}]

=E
[

min
{
Z,T

}]
[by letting Z = min{X,Y }]

=E
[

min
{
Z,T

}
|Z =X

]
·P (Z =X) +E

[
min

{
Z,T

}
|Z = Y

]
·P (Z = Y )

=E
[

min
{
X,T

}]
·P (X ≤ Y ) +E

[
min

{
Y,T

}]
·P (X >Y ). (S.16)

One can check

E
[

min
{
X,T

}]
=

∫ T

0

xdF (x) +T ·P (X >T )
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=x ·F (x)|T0 −
∫ T

0

F (x)dx+T · e−µHT [by partial integration]

=T ·F (T )−
∫ T

0

(1− e−µHx)dx+T · e−µHT

=T · (1− e−µHT )−
[
x+

e−µHx

µH

]T
0

+T · e−µHT

=
1− e−µHT

µH
.

Similarly,

E
[

min
{
Y,T

}]
=

1− e−λT

λ
.

Putting E
[

min
{
X,T

}]
and E

[
min

{
Y,T

}]
back to (S.16) yields

E
[

min
{
X,T,Y

}]
=

1− e−µHT

µH
· µH
λ+µH

+
1− e−λT

λ
· λ

λ+µH
=

1− e−µHT + 1− e−λT

λ+µH
. (S.17)

Putting (S.15) and (S.17) back to (S.14) gives the expression of M . This completes the proof.

Proof of Lemma S.2

Part (a) is immediate.

Next, consider the situation when rL ≤ v < rH . Note that when c > c1(rH , rL, µH , T ),

M = v− rH + (1− e−µHT )
{
e−λT (rH − rL)− c

µH +λ

}
+ (1− e−λT )

{ µH
µH +λ

(rH − rL)− c

µH +λ

}
< v− rH .

Therefore, equations (S.1) and (S.2) can be written as

G(rH) = max
{µL
ν
G(rH) +

µH
ν
G(rL)− c

ν
,0
}
,

G(rL) = v− rL.

Recall that

ν = λ+µH +µL.

We show G(rH) = 0 by contradiction. Suppose for a contradiction that

G(rH) =
µL
ν
G(rH) +

µH
ν
G(rL)− c

ν
> 0.

Solving the equations gives

G(rH) =
µH(v− rL)− c

λ+µH
<
µH(v− rL)−µH(rH − rL)

λ+µH
=
µH(v− rH)

λ+µH
≤ 0,
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contradicting our supposition that G(rH) > 0. Hence, it must be the case that G(rH) = 0. This

gives the solution in Part (b).

Now, suppose v≥ rH . Equations (S.1) and (S.2) can be written as

G(rH) = max
{
v− rH ,

µL
ν
G(rH) +

µH
ν
G(rL)− c

ν

}
,

G(rL) = v− rL.

Following a similar approach as above, one can show that G(rH) = v − rH . This completes the

proof.

Before proving Lemma S.3, we introduce another notation

ṽ(rH , rL, µH , T, c) = rH − (rH − rL)
(
e−λT

λ

λ+µH
)− e−λT e−µHT +

µH
λ+µH

)
+ (2− e−λT − e−µHT )

c

λ+µH
.

Moreover, recall that

v̄(rH , rL, µH , T, c) = rH + (rH − rL)
e−λT

λ
[µH − (λ+µH)(1− e−µHT )] + (1− e−λT − e−µHT )

c

λ
.

Proof of Lemma S.3

Part (a) is immediate.

Suppose v≥ rL. We have

M ≥ v− rH

when c≤ c1(rH , rL, µH , T ). Hence, equations (S.1)–(S.2) can be written as

G(rH) = max
{
M,

µL
ν
G(rH) +

µH
ν

(v− rL)− c

ν
,0
}
,

G(rL) = v− rL.

It remains to solve for G(rH), which we break into three cases.

Case 1: Suppose

M ≥ µL
ν
G(rH) +

µH
ν

(v− rL)− c

ν
, (S.18)

M ≥ 0. (S.19)

It follows that

G(rH) =M = v−rH+(1−e−µHT )
{
e−λT (rH−rL)− c

µH +λ

}
+(1−e−λT )

{ µH
µH +λ

(rH−rL)− c

µH +λ

}
.

Using the expressions of G(rH) in (S.18) and simplifying (S.19), we obtain

v≥ v̄(rH , rL, µH , T, c),
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v≥ ṽ(rH , rL, µH , T, c).

One can verify that if µH ≥ (λ+µH)e−λT , then

c1(rH , rL, µH , T )≤ c2(rH , rL, µH , T ),

and vice versa. One can also check that if c≤ c2(rH , rL, µH , T ), then

v̄(rH , rL, µH , T, c)≥ ṽ(rH , rL, µH , T, c),

and vice versa. Therefore, if either (i) µH ≥ (λ+ µH)e−λT and c ≤ c1(rH , rL, µH , T ), or (ii) µH <

(λ+ µH)e−λT and c≤ c2(rH , rL, µH , T ), we have v̄(rH , rL, µH , T, c)≥ ṽ(rH , rL, µH , T, c). This gives

the solution in Part (d).

Case 2: Suppose

µL
ν
G(rH) +

µH
ν

(v− rL)− c

ν
≥M, (S.20)

µL
ν
G(rH) +

µH
ν

(v− rL)− c

ν
≥ 0. (S.21)

Then

G(rH) =
µL
ν
G(rH) +

µH
ν

(v− rL)− c

ν
.

It follows that

G(rH) =
µH(v− rL)− c

λ+µH
.

Using the expression of G(rH) in (S.20) and (S.21), we obtain

v≤ v̄(rH , rL, µH , T, c),

v≥ rL +
c

µH
.

One can verify that if c≤ c2(rH , rL, µH , T ), then

rL +
c

µH
≤ v̄(rH , rL, µH , T, c).

Note that no matter whether condition (i) or condition (ii) holds, c≤ c2(rH , rL, µH , T ) always holds.

This provides the solution in Part (c).

Case 3: Suppose

M < 0, (S.22)

µL
ν
G(rH) +

µH
ν

(v− rL)− c

ν
< 0. (S.23)
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It follows that G(rH) = 0. Using the expression of G(rH) in (S.22) and (S.23), we obtain

v < ṽ(rH , rL, µH , T, c),

v < rL +
c

µH
.

One can verify that if c≤ c2(rH , rL, µH , T ), then

rL +
c

µH
≤ ṽ(rH , rL, µH , T, c).

Note that no matter whether condition (i) or condition (ii) holds, c≤ c2(rH , rL, µH , T ) always holds.

This leads to the solution in Part (b).

Combining the above cases completes the proof.

Lemma S.5 (Optimal purchase decisions when the price monitoring cost is intermediate).

Consider a type II customer with parameters (v, c) where c2(rH , rL, µH , T ) < c≤ c1(rH , rL, µH , T )

and µH < (λ+ µH)e−λT . The optimal solution to equations (S.1)–(S.2) and the optimal purchase

strategy of the customer are as follows:

(a) If v < rL, then J(rH) = J(rL) = 0 and the customer never purchases;

(b) If rL ≤ v < ṽ(rH , rL, µH , T, c), then G(rH) = 0, G(rL) = v− rL, and the customer purchases

upon arrival when the price is rL, but leaves immediately without a purchase when the price is rH ;

(c) If v ≥ ṽ(rH , rL, µH , T, c), then G(rH) = M and G(rL) = v − rL. The customer purchases

immediately upon arrival. If the purchase is made at the price rH , she would keep monitoring the

price until the price guarantee is applied/expired or her lifetime ends.

Proof of Lemma S.5

Part (a) is immediate.

Suppose v≥ rL. We have

M ≥ v− rH

when c≤ c1(rH , rL, µH , T ). Hence, equations (S.1)–(S.2) can be written as

G(rH) = max
{
M,

µL
ν
G(rH) +

µH
ν

(v− rL)− c

ν
,0
}
,

G(rL) = v− rL.

It remains to solve for G(rH), which we break into three cases.

Case 1: Suppose

M ≥ µL
ν
G(rH) +

µH
ν

(v− rL)− c

ν
, (S.24)
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M ≥ 0. (S.25)

It follows that

G(rH) =M = v−rH+(1−e−µHT )
{
e−λT (rH−rL)− c

µH +λ

}
+(1−e−λT )

{ µH
µH +λ

(rH−rL)− c

µH +λ

}
.

Using the expressions of G(rH) in (S.24) and simplifying (S.25), we obtain

v≥ v̄(rH , rL, µH , T, c),

v≥ ṽ(rH , rL, µH , T, c).

One can verify that

c2(rH , rL, µH , T )≤ c1(rH , rL, µH , T )

if and only if µH < (λ+µH)e−λT . One can also check that if c > c2(rH , rL, µH , T ), then

v̄(rH , rL, µH , T, c)< ṽ(rH , rL, µH , T, c).

Therefore, we have v̄(rH , rL, µH , T, c)< ṽ(rH , rL, µH , T, c). This gives the solution in Part (c).

Case 2: Suppose

µL
ν
G(rH) +

µH
ν

(v− rL)− c

ν
≥M, (S.26)

µL
ν
G(rH) +

µH
ν

(v− rL)− c

ν
≥ 0. (S.27)

Then

G(rH) =
µL
ν
G(rH) +

µH
ν

(v− rL)− c

ν
.

It follows that

G(rH) =
µH(v− rL)− c

λ+µH
.

Using the expression of G(rH) in (S.26) and (S.27), we obtain

v≤ v̄(rH , rL, µH , T, c),

v≥ rL +
c

µH
.

One can verify that if c > c2(rH , rL, µH , T ), then

rL +
c

µH
> v̄(rH , rL, µH , T, c).

Hence, this case is infeasible.
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Case 3: Suppose

M < 0, (S.28)

µL
ν
G(rH) +

µH
ν

(v− rL)− c

ν
< 0. (S.29)

It follows that G(rH) = 0. Using the expression of G(rH) in (S.28) and (S.29), we obtain

v < ṽ(rH , rL, µH , T, c),

v < rL +
c

µH
.

One can verify that if c > c2(rH , rL, µH , T ), then

rL +
c

µH
> ṽ(rH , rL, µH , T, c).

This leads to the solution in Part (b).

Combining the above cases completes the proof.

Before proving Proposition S.8, we first establish the following lemma.

Lemma S.6. Consider the purchase decisions for a type II customer with parameters (v, c) where

either (i) c ≤ c1(rH , rL, µH , T ) and µH ≥ (λ + µH)e−λT , or (ii) c ≤ c2(rH , rL, µH , T ) and µH <

(λ+µH)e−λT . In the presence of price guarantees,

(a) if rL = VL and rL ≤ VH < rL + c
µH

, then the high/low pricing strategy is not optimal;

(b) if rL = VL − c
µH

and VL ≥ rH + (rH − rL) e
−λT

λ

[
µH − (λ+ µH)(1− eµHT )

]
, then the high/low

pricing strategy is not optimal.

Proof of Lemma S.6

Part (a): According to Lemma S.3(c), when rL = VL, low-valuation type I customers purchase at

price rL but wait and monitor when the price is rH . Meanwhile, low-valuation type II customers

purchase at price rL but leave without a purchase when the price is rH .

According to Lemma S.3(b), when rL ≤ VH < rL+ c
µH

, high-valuation type II customers purchase

at price rL but leave without a purchase when the price is rH .

High-valuation type I customers purchase at both prices immediately (and monitor for price

guarantee if the purchase is made at price rH) if

VH ≥ rH + (rH − rL)
e−λT

λ

[
µH − (λ+µH)(1− eµHT )

]
. (S.30)

Otherwise, they would purchase at price rL but wait and monitor when the price is rH .
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If high-valuation type I customers purchase at price rL but wait and monitor when the price

is rH , then none of the four customer segments purchase at the high price rH . Therefore, it is

impossible to obtain a profit higher than rL = VL.

Suppose they purchase at both prices immediately, that is, (S.30) holds. (S.30) can be rewritten

as

rH ≤
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] .

The decision of each segment of customers can be summarized in Figure S.6.

Figure S.6 Customer Purchase Decisions.

Because the firm’s profit is linear in prices, we must have the optimal high price r∗H = rH +(rH−

rL) e
−λT

λ

[
µH− (λ+µH)(1−eµHT )

]
. Moreover, the price minus the expected refund claimed by a HI

customer who purchases at the high price is

E[pG]

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]
rH +

[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
rL

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]VH +VL
e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
+
[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
VL

=
λVH +µHVL
λ+µH

.

The only remaining parameters are µH , µL, and T . Let Φ(µH , µL, T ) denote the firm’s profit per

unit time in this case. We have

Φ(µH , µL, T ) = (1−β)
µH

µH +µL
rL + γ

( µH
µH +µL

rL +
µL

µH +µL

λVH +µHVL
λ+µH

)
+ (β− γ)

( µH
µH +µL

rL +
µL

µH +µL

µH
λ+µH

rL

)
− 2mµHµL
µH +µL
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=
µH

µH +µL
rL + γ

µL
µH +µL

λVH +µHVL
λ+µH

+ (β− γ)
µL

µH +µL

µH
λ+µH

rL−
2mµHµL
µH +µL

= rL +
µL

µH +µL

{
γ
λVH +µHVL
λ+µH

+ (β− γ)
µH

λ+µH
rL− rL− 2mµH

}
= VL +

µL
µH +µL

{
γ
µHVL +λVH
λ+µH

+ (β− γ)
µH

λ+µH
VL−VL− 2mµH

}
.

If the term in the brackets is negative, then Φ(µH , µL, T ) < VL. Suppose the term is positive.

Note that Φ(µH , µL, T ) is increasing in µL, so µ∗
L =∞. It follows that

Φ(µH ,∞, T ) = γ
µHVL +λVH
λ+µH

+ (β− γ)
µH

λ+µH
VL− 2mµH

=
γλVH +βµHVL

λ+µH
− 2mµH

= βVL +
γλVH −βλVL

λ+µH
− 2mµH .

If γλVH −βλVL < 0, then Φ(µH ,∞, T )<VL. Otherwise,

Φ(µH ,∞, T )<βVL +
γλVH −βλVL

λ
− 2mµH = γVH − 2mµH <αVH .

This completes the proof of Part (a).

Part (b): When rL = VL− c
µH

, low-valuation type II customers purchase at price rL but wait and

monitor when the price is rH .

Putting rL = VL− c
µH

into VL ≥ rH + (rH − rL) e
−λT

λ

[
µH − (λ+µH)(1− eµHT )

]
yields

rH ≤ VL−
e−λT

[
µH − (λ+µH)(1− eµHT )

]
λ+ e−λT

[
µH − (λ+µH)(1− eµHT )

] · c
µH

<VL.

Therefore, none of the four customer segments pay a price higher than VL. Therefore, it is impossible

to obtain a profit higher than VL by adopting such a pricing strategy.

Now, we are ready to prove Proposition S.8.

Proof of Proposition S.8

Let’s consider the high/low pricing strategy under which the firm needs to decide five parameters,

rH , rL, µH , µL, and T . According to Lemma S.3, it is never optimal to charge a low price rL

different than VL and VL− c
µH

. Therefore, we consider two cases.

Case 1: rL = VL.

According to Lemma S.3, low-valuation type I customers purchase at the price rL but wait and

monitor when the price is rH . Meanwhile, low-valuation type II customers purchase at the price

rL but leave without a purchase at the price rH .
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High-valuation type I customers purchase at both prices immediately if

VH ≥ rH + (rH − rL)
e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
. (S.31)

Moreover, if the purchase is made at the price rH , they would keep monitoring the price until the

price guarantee is applied or expires. If (S.31) is not satisfied, they would purchase at the price rL

immediately and wait and monitor when the price is rH .11 Inequality (S.31) can be rewritten as

rH ≤
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] .

High-valuation type II customers purchase immediately if

VH ≥ rH + (rH − rL)
e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
+ (1− e−λT − e−µHT )

c

λ
. (S.32)

Moreover, if the purchase is made at the price rH , they would keep monitoring the price until the

price guarantee is applied or expires. If (S.32) is not satisfied, there are two possibilities. When

rL + c
µH
≤ VH < rH + (rH − rL) e

−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
+ (1− e−λT − e−µHT ) c

λ
, they would

purchase at the price rL but wait and monitor when the price is rH . When rL ≤ VH < rL + c
µH

,

they would purchase at the price rL but leave without a purchase when the price is rH . However,

Lemma S.6(a) implies that the high/low pricing strategy is not optimal in this case. Therefore,

we restrict our attention to the first possibility if (S.32) does not hold. Inequality (S.32) can be

written as

rH ≤
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
− (1− e−λT − e−µHT ) c

λ

1 + e−λT
λ

[
µH − (λ+µH)(1− e−µHT )

] .

From the conditions on rH , we can analyze the firm’s pricing problem based on the range of rH .

We consider four cases, labeled Cases 1.1-1.4. We will show each of the four cases generates a profit

lower than the profit from static pricing at either VL or VH .

Case 1.1: Suppose

rH >
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] ,

rH >
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
− (1− e−λT − e−µHT ) c

λ

1 + e−λT
λ

[
µH − (λ+µH)(1− e−µHT )

] .

Then both high-valuation type I and high-valuation type II customers purchase at the price rL but

wait and monitor when the price is rH . The purchase decisions of customers can be summarized

in Figure S.7.

11 Note that when c= 0, Lemma S.3(b) does not exist.
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Figure S.7 Customer Purchase Decisions in Case 1.1.

Since customers never purchase at the price rH , it is impossible to obtain a profit higher than

rL = VL.

Case 1.2: Suppose

rH >
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] , (S.33)

rH ≤
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
− (1− e−λT − e−µHT ) c

λ

1 + e−λT
λ

[
µH − (λ+µH)(1− e−µHT )

] . (S.34)

Then high-valuation type I customers purchase at the price rL but wait and monitor when the

price is rH . Meanwhile, high-valuation type II customers purchase at both prices and monitor for

price guarantees if the purchase is made at the price rH . The purchase decisions of customers can

be summarized in Figure S.8.

Figure S.8 Customer Purchase Decisions in Case 1.2.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =
VH+VL

e−λT
λ

[
µH−(λ+µH )(1−e−µHT )

]
−(1−e−λT−e−µHT ) cλ

1+ e−λT
λ

[
µH−(λ+µH )(1−e−µHT )

] . Moreover, the price minus the expected refund

claimed by a HII customer who purchases at the high price is

E[pG]
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=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]
rH +

[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
rL

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]VH +VL
e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
− (1− e−λT − e−µHT ) c

λ

1 + e−λT
λ

[
µH − (λ+µH)(1− e−µHT )

]
+
[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
VL

=
λVH +µHVL− (1− e−λT − e−µHT )c

λ+µH
.

The only remaining parameters are µH , µL and T . Let Φ1.2(µH , µL, T ) denote the firm’s profit

per unit time in this case. Then,

Φ1.2(µH , µL, T )

=β
( µH
µH +µL

rL +
µL

µH +µL

µH
λ+µH

rL

)
+ (α− γ)

( µH
µH +µL

rL +
µL

µH +µL

λVH +µHVL− (1− e−λT − e−µHT )c

λ+µH

)
+ (1−α−β+ γ)

µH
µH +µL

rL−
2mµHµL
µH +µL

=
µH

µH +µL
rL +β

µL
µH +µL

µH
λ+µH

rL + (α− γ)
µL

µH +µL

λVH +µHVL− (1− e−λT − e−µHT )c

λ+µH
− 2mµHµL
µH +µL

=VL +
µL

µH +µL

{
β

µH
λ+µH

VL + (α− γ)
λVH +µHVL− (1− e−λT − e−µHT )c

λ+µH
−VL− 2mµH

}
.

If the term in the brackets is negative, then Φ1.2(µH , µL, T )<VL. Suppose the term is positive.

Note that Φ1.2(µH , µL, T ) is increasing in µL, so µ∗
L =∞. It follows that

Φ1.2(µH ,∞, T ) = β
µH

λ+µH
VL + (α− γ)

λVH +µHVL
λ+µH

− (α− γ)
1− e−λT − e−µHT

λ+µH
c− 2mµH .

Note that Φ1.2(µH ,∞) is decreasing in T , so T ∗ = 0, and thus

Φ1.2(µH ,∞,0) = β
µH

λ+µH
VL + (α− γ)

λVH +µHVL + c

λ+µH
− 2mµH .

The remaining analysis is the same as Case 1.2 in the proof of Lemma E.5 in E-Companion. In the

end, we obtain Φ1.2(µH ,∞,0)<max{VL, αVH}.

Case 1.3: Suppose

rH ≤
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] ,

rH >
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
− (1− e−λT − e−µHT ) c

λ

1 + e−λT
λ

[
µH − (λ+µH)(1− e−µHT )

] .

Then high-valuation type I customers purchase at both prices and monitor for price guarantees if

the purchase is made at the price rH . Meanwhile, high-valuation type II customers purchase at the
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Figure S.9 Customer Purchase Decisions in Case 1.3.

price rL but wait and monitor when the price is rH . The purchase decisions of customers can be

summarized in Figure S.9.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =
VH+VL

e−λT
λ

[
µH−(λ+µH )(1−e−µHT )

]
1+ e−λT

λ

[
µH−(λ+µH )(1−e−µHT )

] . Moreover, the price minus the expected refund claimed by a HI

customer who purchases at the high price is

E[pG]

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]
rH +

[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
rL

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]VH +VL
e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
+
[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
VL

=
λVH +µHVL
λ+µH

.

The only remaining parameters are µH , µL, and T . Let Φ1.3(µH , µL, T ) denote the firm’s profit

per unit time in this case. Then,

Φ1.3(µH , µL, T )

=γ
( µH
µH +µL

rL +
µL

µH +µL

λVH +µHVL
λ+µH

)
+ (α+β− 2γ)

( µH
µH +µL

rL +
µL

µH +µL

µH
λ+µH

rL

)
+ (1−α−β+ γ)

µH
µH +µL

rL−
2mµHµL
µH +µL

=
µH

µH +µL
rL + γ

µL
µH +µL

λVH +µHVL
λ+µH

+ (α+β− 2γ)
µL

µH +µL

µH
λ+µH

rL−
2mµHµL
µH +µL

=rL +
µL

µH +µL

{
γ
λVH +µHVL
λ+µH

+ (α+β− 2γ)
µH

λ+µH
rL− rL− 2mµH

}
=VL +

µL
µH +µL

{
γ
λVH +µHVL
λ+µH

+ (α+β− 2γ)
µH

λ+µH
VL−VL− 2mµH

}
.
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If the term in the brackets is negative, then Φ1.3(µH , µL, T )<VL. Suppose the term is positive.

Note that Φ1.3(µH , µL, T ) is increasing in µL, so µ∗
L =∞. It follows that

Φ1.3(µH ,∞, T ) = γ
λVH +µHVL
λ+µH

+ (α+β− 2γ)
µH

λ+µH
VL− 2mµH

= (α+β− γ)VL +
γλVH − (α+β− γ)λVL

λ+µH
− 2mµH .

If γλVH − (α+β− γ)λVL < 0, then Φ1.3(µH ,∞, T )< (α+β− γ)VL <VL. Otherwise,

Φ1.3(µH ,∞, T )< (α+β− γ)VL +
γλVH − (α+β− γ)λVL

λ
− 2mµH = γVH − 2mµH <αVH .

Case 1.4: Suppose

rH ≤
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] , (S.35)

rH ≤
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
− (1− e−λT − e−µHT ) c

λ

1 + e−λT
λ

[
µH − (λ+µH)(1− e−µHT )

] . (S.36)

Then both high-valuation type I and high-valuation type II customers purchase at both prices and

monitor for price guarantees if the purchase is made at the price rH . The purchase decisions of

customers can be summarized in Figure S.10.

Figure S.10 Customer Purchase Decisions in Case 1.4.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =

min
{
VH+VL

e−λT
λ

[
µH−(λ+µH )(1−e−µHT )

]
1+ e−λT

λ

[
µH−(λ+µH )(1−e−µHT )

] ,
VH+VL

e−λT
λ

[
µH−(λ+µH )(1−e−µHT )

]
−(1−e−λT−e−µHT ) cλ

1+ e−λT
λ

[
µH−(λ+µH )(1−e−µHT )

] }
. Moreover,

the price minus the expected refund claimed by a high-valuation customer who purchases at the

high price is

E[pG]

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]
rH +

[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
rL
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≤
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]VH +VL
e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
+
[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
VL

=
λVH +µHVL
λ+µH

.

The only remaining parameters are µH , µL, and T . Let Φ1.4(µH , µL, T ) denote the firm’s profit

per unit time in this case. Then,

Φ1.4(µH , µL, T )

≤α
( µH
µH +µL

rL +
µL

µH +µL

λVH +µHVL
λ+µH

)
+ (β− γ)

( µH
µH +µL

rL +
µL

µH +µL

µH
λ+µH

rL

)
+ (1−α−β+ γ)

µH
µH +µL

rL−
2mµHµL
µH +µL

=
µH

µH +µL
rL +α

µL
µH +µL

λVH +µHVL
λ+µH

+ (β− γ)
µL

µH +µL

µH
λ+µH

rL−
2mµHµL
µH +µL

=VL +
µL

µH +µL

{
α
λVH +µHVL
λ+µH

+ (β− γ)
µH

λ+µH
VL−VL− 2mµH

}
.

If the term in the brackets is negative, then Φ1.4(µH , µL, T )<VL. Suppose the term is positive.

Note that Φ1.4(µH , µL, T ) is increasing in µL, so µ∗
L =∞. It follows that

Φ1.4(µH ,∞, T ) = α
µHVL +λVH
λ+µH

+ (β− γ)
µH

λ+µH
VL− 2mµH .

The remaining analysis is the same as Case 1.3 in the proof of Lemma E.5 in E-Companion,

establishing that Φ1.4(µH ,∞, T )<max{VL, αVH}.

Case 2: rL = VL− c
µH

.

According to Lemma S.3, low-valuation type II customers purchase at the price rL but wait and

monitor when the price is rH .

For low-valuation type I customers, there are two possibilities. If VL > rH + (rH − rL) e
−λT

λ

[
µH −

(λ+µH)(1−e−µHT )
]
, they purchase at both prices and monitor for price guarantees if the purchase

is made at the price rH . However, Lemma S.6(b) shows that the high/low pricing strategy is not

optimal in this case. If VL ≤ rH + (rH − rL) e
−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
, they purchase at the

price rL but wait and monitor when the price is rH . We will focus on the second possibility.

High-valuation type I customers purchase at both prices immediately if

VH ≥ rH + (rH − rL)
e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
. (S.37)
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Moreover, if the purchase is made at the price rH , they would keep monitoring the price until the

price guarantee is applied or expires. If (S.37) is not satisfied, they would purchase at the price rL

immediately and wait and monitor when the price is rH . Inequality (S.37) can be rewritten as

rH ≤
VH + (VL− c

µH
) e

−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] .

High-valuation type II customers purchase immediately if

VH ≥ rH + (rH − rL)
e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
+ (1− e−λT − e−µHT )

c

λ
. (S.38)

Moreover, if the purchase is made at the price rH , they would keep monitoring the price until the

price guarantee is applied or expires. If (S.38) is not satisfied, they would purchase at the price rL

but wait and monitor when the price is rH . Inequality (S.38) can be written as

rH ≤
VH + (VL− c

µH
) e

−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
− (1− e−λT − e−µHT ) c

λ

1 + e−λT
λ

[
µH − (λ+µH)(1− e−µHT )

] .

From the conditions on rH , we can analyze the firm’s pricing problem based on the range of rH .

We consider four cases, labeled Cases 2.1-2.4. We will show each of the four cases generates a profit

lower than max{VL, αVH}.

Case 2.1: Suppose

rH >
VH + (VL− c

µH
) e

−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] ,

rH >
VH + (VL− c

µH
) e

−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
− (1− e−λT − e−µHT ) c

λ

1 + e−λT
λ

[
µH − (λ+µH)(1− e−µHT )

] .

Then both high-valuation type I and high-valuation type II customers purchase at the price rL but

wait and monitor when the price is rH . The purchase decisions of customers can be summarized

in Figure S.11.

Since customers never purchase at price rH , it is impossible to obtain a profit higher than rL <VL.

Case 2.2: Suppose

rH >
VH + (VL− c

µH
) e

−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] ,

rH ≤
VH + (VL− c

µH
) e

−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
− (1− e−λT − e−µHT ) c

λ

1 + e−λT
λ

[
µH − (λ+µH)(1− e−µHT )

] .

Then high-valuation type I customers purchase at price rL but wait and monitor when the price is

rH . Meanwhile, high-valuation type II customers purchase at both prices and monitor if the pur-

chase is made at price rH . The purchase decisions of customers can be summarized in Figure S.12.
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Figure S.11 Customer Purchase Decisions in Case 2.1.

Figure S.12 Customer Purchase Decisions in Case 2.2.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =
VH+(VL− c

µH
) e

−λT
λ

[
µH−(λ+µH )(1−e−µHT )

]
−(1−e−λT−e−µHT ) cλ

1+ e−λT
λ

[
µH−(λ+µH )(1−e−µHT )

] . Moreover, the price minus the expected

refund claimed by a HII customer who purchases at the high price is

E[pG]

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]
rH +

[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
rL

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]VH + (VL− c
µH

) e
−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
− (1− e−λT − e−µHT ) c

λ

1 + e−λT
λ

[
µH − (λ+µH)(1− e−µHT )

]
+
[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
(VL−

c

µH
)

=
λVH +µHVL− (2− e−µHT − e−λT )c

λ+µH
.

The only remaining parameters are µH , µL, and T . Let Φ2.2(µH , µL, T ) denote the firm’s profit

per unit time in this case. Then,

Φ2.2(µH , µL, T )

=(α− γ)
( µH
µH +µL

rL +
µL

µH +µL

λVH +µHVL− (2− e−µHT − e−λT )c

λ+µH

)
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+ (1−α+ γ)
( µH
µH +µL

rL +
µL

µH +µL

µH
λ+µH

rL

)
− 2mµHµL
µH +µL

=
µH

µH +µL
rL + (α− γ)

µL
µH +µL

λVH +µHVL− (2− e−µHT − e−λT )c

λ+µH
+ (1−α+ γ)

µL
µH +µL

µH
λ+µH

rL−
2mµHµL
µH +µL

=rL +
µL

µH +µL

{
(α− γ)

λVH +µHVL− (2− e−µHT − e−λT )c

λ+µH
+ (1−α+ γ)

µH
λ+µH

rL− rL− 2mµH

}
=VL−

c

µH
+

µL
µH +µL

{
(α− γ)

λVH +µHVL− (2− e−µHT − e−λT )c

λ+µH
+ (1−α+ γ)

µHVL− c
λ+µH

− (VL−
c

µH
)− 2mµH

}
.

If the term in the brackets is negative, then Φ2.2(µH , µL, T )<VL. Suppose the term is positive.

Note that Φ2.2(µH , µL, T ) is increasing in µL, so µ∗
L =∞. It follows that

Φ2.2(µH ,∞, T ) = (α− γ)
λVH +µHVL− (2− e−µHT − e−λT )c

λ+µH
+ (1−α+ γ)

µHVL− c
λ+µH

− 2mµH

≤ (α− γ)
µHVL +λVH
λ+µH

+ (1−α+ γ)
µHVL− c
λ+µH

− 2mµH .

The remaining analysis is the same as Case 2.2 in the proof of Lemma E.5 in E-Companion.

Therefore, we obtain Φ2.2(µH ,∞, T )<max{VL, αVH}.

Case 2.3: Suppose

rH ≤
VH + (VL− c

µH
) e

−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] ,

rH >
VH + (VL− c

µH
) e

−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
− (1− e−λT − e−µHT ) c

λ

1 + e−λT
λ

[
µH − (λ+µH)(1− e−µHT )

] .

Then high-valuation type I customers purchase at both prices and monitor for price guarantees if

the purchase is made at the price rH . Meanwhile, high-valuation type II customers purchase at the

price rL but wait and monitor when the price is rH . The purchase decisions of customers can be

summarized in Figure S.13.

Figure S.13 Customer Purchase Decisions in Case 2.3.
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Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =
VH+(VL− c

µH
) e

−λT
λ

[
µH−(λ+µH )(1−e−µHT )

]
1+ e−λT

λ

[
µH−(λ+µH )(1−e−µHT )

] . Moreover, the price minus the expected refund claimed by

a HI customer who purchases at the high price is

E[pG]

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]
rH +

[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
rL

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]VH + (VL− c
µH

) e
−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
+
[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
(VL−

c

µH
)

=
λVH +µHVL− c

λ+µH
.

The only remaining parameters are µH , µL, and T . Let Φ2.3(µH , µL, T ) denote the firm’s profit

per unit time in this case. Then,

Φ2.3(µH , µL, T )

=γ
( µH
µH +µL

rL +
µL

µH +µL

λVH +µHVL− c
λ+µH

)
+ (1− γ)

( µH
µH +µL

rL +
µL

µH +µL

µH
λ+µH

rL

)
− 2mµHµL
µH +µL

=
µH

µH +µL
rL + γ

µL
µH +µL

λVH +µHVL− c
λ+µH

+ (1− γ)
µL

µH +µL

µH
λ+µH

rL−
2mµHµL
µH +µL

=rL +
µL

µH +µL

{
γ
λVH +µHVL− c

λ+µH
+ (1− γ)

µH
λ+µH

rL− rL− 2mµH

}
=VL−

c

µH
+

µL
µH +µL

{
γ
λVH +µHVL− c

λ+µH
+ (1− γ)

µHVL− c
λ+µH

− (VL−
c

µH
)− 2mµH

}
.

If the term in the brackets is negative, then Φ2.3(µH , µL, T ) < VL. Suppose the term is positive.

Note that Φ2.3(µH , µL, T ) is increasing in µL, so µ∗
L =∞. It follows that

Φ2.3(µH ,∞, T ) = γ
λVH +µHVL− c

λ+µH
+ (1− γ)

µHVL− c
λ+µH

− 2mµH

= VL +
γλVH −λVL− c

λ+µH
− 2mµH .

If γλVH −λVL− c < 0, then Φ2.3(µH ,∞, T )< (α+β− γ)VL <VL. Otherwise,

Φ2.3(µH ,∞, T )<VL +
γλVH −λVL− c

λ
− 2mµH <γVH − 2mµH <αVH .

Case 2.4: Suppose

rH ≤
VH + (VL− c

µH
) e

−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] ,
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rH ≤
VH + (VL− c

µH
) e

−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
− (1− e−λT − e−µHT ) c

λ

1 + e−λT
λ

[
µH − (λ+µH)(1− e−µHT )

] .

In this case, both high-valuation type I and high-valuation type II customers purchase at both

prices and monitor for price guarantees if the purchase is made at the price rH . The purchase

decisions of customers can be summarized in Figure S.14.

Figure S.14 Customer Purchase Decisions in Case 2.4.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =

min
{
VH+(VL− c

µH
) e

−λT
λ

[
µH−(λ+µH )(1−e−µHT )

]
1+ e−λT

λ

[
µH−(λ+µH )(1−e−µHT )

] ,
VH+(VL− c

µH
) e

−λT
λ

[
µH−(λ+µH )(1−e−µHT )

]
−(1−e−λT−e−µHT ) cλ

1+ e−λT
λ

[
µH−(λ+µH )(1−e−µHT )

] }
.

Moreover, the price minus the expected refund claimed by a high-valuation customer who purchases

at the high price is

E[pG]

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]
rH +

[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
rL

≤
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]VH + (VL− c
µH

) e
−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
+
[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
(VL−

c

µH
)

=
λVH +µHVL− c

λ+µH
.

The only remaining parameters are µH , µL, and T . Let Φ2.4(µH , µL, T ) denote the firm’s profit

per unit time in this case. Then,

Φ2.4(µH , µL, T )

=α
( µH
µH +µL

rL +
µL

µH +µL

λVH +µHVL− c
λ+µH

)
+ (1−α)

( µH
µH +µL

rL +
µL

µH +µL

µH
λ+µH

rL

)
− 2mµHµL
µH +µL



34

=
µH

µH +µL
rL +α

µL
µH +µL

λVH +µHVL− c
λ+µH

+ (1−α)
µL

µH +µL

µH
λ+µH

rL−
2mµHµL
µH +µL

=rL +
µL

µH +µL

{
α
λVH +µHVL− c

λ+µH
+ (1−α)

µH
λ+µH

rL− rL− 2mµH

}
=VL−

c

µH
+

µL
µH +µL

{
α
µHVL +λVH − c

λ+µH
+ (1−α)

µHVL− c
λ+µH

− (VL−
c

µH
)− 2mµH

}
.

The remaining analysis is the same as Case 2.3 in the proof of Lemma E.5 in E-Companion.

Therefore, we have Φ2.4(µH ,∞, T )<max{VL, αVH}. This completes the proof of Proposition S.8.

Proof of Proposition S.9

First, type I customers’ behavior can be obtained by taking c = 0 in Lemma S.3, while type II

customers’ behavior is the same as in Lemma S.2. Taking into account the behavior of both types

of customers, it is never optimal to charge the low price rL different from VL. The only remaining

parameters are µH , µL, rH , and T .

When rL = VL, low-valuation type I customers purchase at the price rL but wait and monitor

when the price is rH , while low-valuation type II customers purchase at the price rL but leave

without a purchase when the price is rH .

High-valuation type I customers purchase at both prices immediately if

VH ≥ rH + (rH − rL)
e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
. (S.39)

Moreover, if the purchase is made at the price rH , they would keep monitoring the price until the

price guarantee is applied or expires. If (S.39) is not satisfied, they would purchase at the price rL

immediately and wait and monitor when the price is rH . Inequality (S.39) can be rewritten as

rH ≤
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] .

For high-valuation type II customers, there are two possibilities. When VH < rH , they purchase

at the price rL but leave without a purchase when the price is rH . At the same time, if high-

valuation type I customers purchase at both prices, then customers’ decision is the same as in

Figure S.6; therefore, following the analysis in Lemma S.6(a), the high/low pricing strategy is never

optimal. If high-valuation type I customers purchase at the price rL but wait when the price is

rH , then no customers of the four segments purchase at the high price rH ; therefore, the high/low

pricing strategy is also not optimal. To summarize, when VH < rH , the high/low pricing strategy

is not optimal. Hereafter, we restrict our attention to the possibility with VH ≥ rH , in which case

high-valuation type II customers purchase at both prices but do not monitor for price guarantees.
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We can analyze the firm’s pricing problem based on the range of rH . We consider two cases,

labeled Cases I and II.

Case I:
VH+VL

e−λT
λ

[
µH−(λ+µH )(1−e−µHT )

]
1+ e−λT

λ

[
µH−(λ+µH )(1−e−µHT )

] < rH ≤ VH.

In this case, the purchase decisions of customers can be summarized in Figure S.15.

Figure S.15 Customer Purchase Decisions in Case I.

The analysis and result are the same as in the case without price guarantees (Case I in the proof

of Proposition 4 in E-Companion). Hence,

ΦI,∗ =


(α− γ)VH +β

(
1−

√
2mλ
βVL

)
VL− 2m

(√
βλVL
2m
−λ
)
, if βVL− 2mλ> 0,

(α− γ)VH , if βVL− 2mλ≤ 0.

Case II: rH ≤
VH+VL

e−λT
λ

[
µH−(λ+µH )(1−e−µHT )

]
1+ e−λT

λ

[
µH−(λ+µH )(1−e−µHT )

] and rH ≤ VH.

In this case, the purchase decisions of customers can be summarized in Figure S.16.

Figure S.16 Customer Purchase Decisions in Case II.

Comparing
VH+VL

e−λT
λ

[
µH−(λ+µH )(1−e−µHT )

]
1+ e−λT

λ

[
µH−(λ+µH )(1−e−µHT )

] with VH yields that

VH +VL
e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] ≥ VH
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if and only if λ
λ+µH

≥ e−µHT . Therefore, we have two subcases with respect to the range of T .

Subcase II.A: λ
λ+µH

≤ e−µHT .

In this subcase, the optimal high price must be r∗H =
VH+VL

e−λT
λ

[
µH−(λ+µH )(1−e−µHT )

]
1+ e−λT

λ

[
µH−(λ+µH )(1−e−µHT )

] . Moreover,

the price minus the expected refund claimed by a HI customer who purchases at the high price is

E[pG] =
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]
rH +

[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
rL

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]VH +VL
e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
+
[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
VL

=
λVH +µHVL
λ+µH

.

Let ΦII,A(µH , µL, T ) denote the firm’s profit in this case. Then,

ΦII,A(µH , µL, T )

=γ

[
µL

µH +µL
· λVH +µHVL

λ+µH
+

µH
µH +µL

·VL
]

︸ ︷︷ ︸
revenue from HI customers

+ (α− γ)

[
µL

µH +µL
·
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] +
µH

µH +µL
·VL

]
︸ ︷︷ ︸

revenue from HII customers

+ (β− γ)

[
µL

µH +µL
· µH
λ+µH

·VL +
µH

µH +µL
VL

]
︸ ︷︷ ︸

revenue from LI customers

+ (1−α−β+ γ) · µH
µH +µL

·VL︸ ︷︷ ︸
revenue from LII customers

− 2mµHµL
µH +µL︸ ︷︷ ︸

cost of price changes

=VL +
µL

µH +µL

[
γ
λVH +µHVL
λ+µH

+ (α− γ)
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
+ (β− γ) · µH

λ+µH
·VL−VL− 2mµH

]

≤VL +
µL

µH +µL

[
γ
λVH +µHVL
λ+µH

+ (α− γ)VH + (β− γ) · µH
λ+µH

·VL−VL− 2mµH

]
,

where the last inequality holds because
VH+VL

e−λT
λ

[
µH−(λ+µH )(1−e−µHT )

]
1+ e−λT

λ

[
µH−(λ+µH )(1−e−µHT )

] ≤ VH . Therefore, the profit

in this subcase is dominated by Subcase II.B analyzed below.
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Subcase II.B: λ
λ+µH

≥ e−µHT .

In this subcase, the optimal high price must be r∗H = VH . Moreover, the price minus the expected

refund claimed by a HI customer who purchased at the high price is

E[pG] =
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]
VH +

[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
VL

= VH −
[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
(VH −VL).

Let ΦII,B(µH , µL, T ) denote the firm’s profit in this case. Then,

ΦII,B(µH , µL, T )

=γ

[
µL

µH +µL

{
VH −

[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
(VH −VL)

}
+

µH
µH +µL

VL

]

+ (α− γ)

[
µL

µH +µL
VH +

µH
µH +µL

VL

]
+ (β− γ)

[
µL

µH +µL

µH
λ+µH

VL +
µH

µH +µL
VL

]

+ (1−α−β+ γ)
µH

µH +µL
VL−

2mµHµL
µH +µL

=VL +
µL

µH +µL

{
γ
{
VH −

[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
(VH −VL)

}
+ (α− γ)VH

+ (β− γ)
µH

λ+µH
VL−VL− 2mµH

}
.

The optimal T ∗ should minimize e−λT (1− e−µHT ) + (1− e−λT ) µH
λ+µH

. Note that 1− e−µHT ≥ µH
λ+µH

,

so e−λT should be as small as possible. Therefore, T ∗ =∞ and (1−e−µHT )e−λT +(1−e−λT ) µH
λ+µH

=

µH
λ+µH

. Putting T ∗ =∞ back to the profit function yields that

ΦII,B(µH , µL,∞)

=VL +
µL

µH +µL

[
γ
λVH +µHVL
λ+µH

+ (α− γ)VH + (β− γ) · µH
λ+µH

·VL−VL− 2mµH

]
.

When the term in the square brackets is negative, the profit is less than VL, which is the profit

from static pricing at VL. We proceed with the analysis assuming the term in the square brackets

is positive. In our final analysis, we will compare the profit in this case with the optimal profit

without price guarantees.

Since ΦII,B(µH , µL,∞) is increasing in µL, the optimal value of µL is ∞. We have

ΦII,B(µH ,∞,∞) = γ
λVH +µHVL
λ+µH

+ (α− γ)VH + (β− γ) · µH
λ+µH

·VL− 2mµH .

It can be shown that when K ≤ 0, ΦII,B(µH ,∞,∞) decreases in µH . Hence, the optimal µH = 0.

The corresponding profit is

ΦII,B(0,∞,∞) = αVH ,
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which is the same as the revenue from static pricing at VH .

When K > 0, we can solve for µH using the first-order condition, which gives

µII,B,∗H =

{√
λK
2m
−λ, if K − 2mλ> 0,

0, if K − 2mλ≤ 0.

The corresponding profit is

ΦII,B,∗ =


βVL + (α− γ)VH + (γVH −βVL)

√
2mλ
K
− 2mλ

(√
K

2mλ
− 1
)
, if K − 2mλ> 0,

αVH , if K − 2mλ≤ 0.

Moreover, when K − 2mλ> 0, we obtain T ∗ =∞, and r∗H = VH . Putting µ∗
H , r∗H , r∗L, and T ∗ into

the condition c > c1(rH , rL, µH , T ) yields the constraint

c >
λ

2

(√ K

2mλ
− 1
)

(VH −VL).

Summarizing the results for Cases I and II yields the following:

• If K > 2mλ, then

ΦI,∗ = (α− γ)VH +β

(
1−

√
2mλ

βVL

)
VL− 2m

(√
βλVL
2m

−λ

)
,

ΦII,∗ = ΦII,B,∗ = βVL + (α− γ)VH + (γVH −βVL)

√
2mλ

K
− 2mλ

(√
K

2mλ
− 1

)
.

One can check that ΦII,∗ ≥ΦI,∗. Hence,

ΦB,∗ = βVL + (α− γ)VH + (γVH −βVL)

√
2mλ

K
− 2mλ

(√
K

2mλ
− 1

)
.

• If K ≤ 2mλ<βVL, then

ΦI,∗ = (α− γ)VH +β

(
1−

√
2mλ

βVL

)
VL− 2m

(√
βλVL
2m

−λ

)
,

ΦII,∗ = ΦII,B,∗ = αVH .

Hence,

ΦB,∗ = max
{

(α− γ)VH +β

(
1−

√
2mλ

βVL

)
VL− 2m

(√
βλVL
2m

−λ

)
, αVH

}
.

• If K ≤ βVL ≤ 2mλ, then ΦI,∗ = (α− γ)VH <αVH = ΦII,∗. Hence, ΦB,∗ = ΦII,∗ = αVH .

Comparing VL, αVH , and ΦB,∗ when K ≤ 2mλ shows that the pricing strategy is the same as

that in Proposition 4. Comparing the profits when K > 2mλ yields the results in Parts (i)–(iii).

This completes the proof of Proposition S.9.

Proposition S.15. If the monitoring cost c is intermediate (as stated in Lemma S.5) such that

type II customers who purchase at the high price monitor the price after purchase, high/low pricing

with price guarantees cannot improve the firm profit, compared to static pricing.
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Proof of Proposition S.15

Let’s consider the high/low pricing strategy under which the firm needs to decide five parameters,

rH , rL, µH , µL, and T . According to Lemma S.3 with c= 0 and Lemma S.5, it is never optimal to

charge a low price rL different than VL. Therefore, we focus on the case where rL = VL.

According to Lemma S.3, low-valuation type I customers purchase at the price rL but wait and

monitor when the price is rH . Meanwhile, according to Lemma S.5, low-valuation type II customers

purchase at the price rL but leave without a purchase at the price rH .

High-valuation type I customers purchase at both prices immediately if

VH ≥ rH + (rH − rL)
e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
. (S.40)

Moreover, if the purchase is made at the price rH , they would keep monitoring the price until

the price guarantee is applied/expired or their lifetime ends. If (S.40) is not satisfied, they would

purchase at the price rL immediately and wait and monitor when the price is rH . Inequality (S.40)

can be rewritten as

rH ≤
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] .

High-valuation type II customers purchase immediately if

VH ≥ rH − (rH − rL)
( λ

λ+µH
e−λT − e−µHT e−λT +

µH
λ+µH

)
+ (2− e−µHT − e−λT )

c

λ+µH
. (S.41)

Moreover, if the purchase is made at the price rH , they would keep monitoring the price until

the price guarantee is applied/expired or their lifetime ends. If (S.41) is not satisfied, they would

purchase at the price rL but leave without a purchase when the price is rH . Inequality (S.41) can

be written as

rH ≤
VH −VL

(
λ

λ+µH
e−λT − e−µHT e−λT + µH

λ+µH

)
− (2− e−µHT − e−λT ) c

λ+µH

λ
λ+µH

(1− e−λT ) + e−λT e−µHT
.

From the conditions on rH , we can analyze the firm’s pricing problem based on the range of rH .

We consider four cases, labeled Cases 1-4. We will show each of the four cases generates a profit

lower than the profit from static pricing at either VL or VH .

Case 1: Suppose

rH >
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] ,

rH >
VH −VL

(
λ

λ+µH
e−λT − e−µHT e−λT + µH

λ+µH

)
− (2− e−µHT − e−λT ) c

λ+µH

λ
λ+µH

(1− e−λT ) + e−λT e−µHT
.
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Figure S.17 Customer Purchase Decisions in Case 1.

Then high-valuation type I customers purchase at price rL but wait and monitor when the price

is rH , while high-valuation type II customers purchase at price rL but leave when the price is rH .

The purchase decisions of customers can be summarized in Figure S.17.

Since customers never purchase at the price rH , it is impossible to obtain a profit higher than

rL = VL.

Case 2: Suppose

rH >
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] , (S.42)

rH ≤
VH −VL

(
λ

λ+µH
e−λT − e−µHT e−λT + µH

λ+µH

)
− (2− e−µHT − e−λT ) c

λ+µH

λ
λ+µH

(1− e−λT ) + e−λT e−µHT
. (S.43)

Then high-valuation type I customers purchase at the price rL but wait and monitor when the

price is rH . Meanwhile, high-valuation type II customers purchase at both prices and monitor for

price guarantees if the purchase is made at the price rH . The purchase decisions of customers can

be summarized in Figure S.18.

Figure S.18 Customer Purchase Decisions in Case 2.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =
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VH−VL

(
λ

λ+µH
e−λT−e−µHT e−λT+

µH
λ+µH

)
−(2−e−µHT−e−λT ) c

λ+µH

λ
λ+µH

(1−e−λT )+e−λT e−µHT
. Moreover, the price minus the expected

refund claimed by a HII customer who purchases at the high price is

E[pG]

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]
rH +

[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
rL

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]VH −VL( λ
λ+µH

e−λT − e−µHT e−λT + µH
λ+µH

)
− (2− e−µHT − e−λT ) c

λ+µH

λ
λ+µH

(1− e−λT ) + e−λT e−µHT

+
[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
VL

=VH − (2− e−µHT − e−λT )
c

λ+µH
.

The only remaining parameters are µH , µL and T . Let Φ2(µH , µL, T ) denote the firm’s profit per

unit time in this case. Then,

Φ2(µH , µL, T )

=β
( µH
µH +µL

rL +
µL

µH +µL

µH
λ+µH

rL

)
+ (α− γ)

( µH
µH +µL

rL +
µL

µH +µL

[
VH − (2− e−µHT − e−λT )

c

λ+µH

])
+ (1−α−β+ γ)

µH
µH +µL

rL−
2mµHµL
µH +µL

=VL +
µL

µH +µL

{
β

µH
λ+µH

VL + (α− γ)
[
VH − (2− e−µHT − e−λT )

c

λ+µH

]
−VL− 2mµH

}
.

If the term in the brackets is negative, then Φ1.2(µH , µL, T )<VL. Suppose the term is positive.

Note that Φ1.2(µH , µL, T ) is increasing in µL, so µ∗
L =∞. It follows that

Φ2(µH ,∞, T ) = β
µH

λ+µH
VL + (α− γ)VH − (α− γ)(2− e−µHT − e−λT )

c

λ+µH
− 2mµH

≤ β µH
λ+µH

VL + (α− γ)VH − 2mµH

≤Φ∗,

which is the optimal profit of high/low pricing when there are no price guarantees.

Case 3: Suppose

rH ≤
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] ,

rH >
VH −VL

(
λ

λ+µH
e−λT − e−µHT e−λT + µH

λ+µH

)
− (2− e−µHT − e−λT ) c

λ+µH

λ
λ+µH

(1− e−λT ) + e−λT e−µHT
.
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Then high-valuation type I customers purchase at both prices and monitor for price guarantees if

the purchase is made at the price rH . Meanwhile, high-valuation type II customers purchase at the

price rL but leave when the price is rH . The purchase decisions of customers can be summarized

in Figure S.19.

Figure S.19 Customer Purchase Decisions in Case 3.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =
VH+VL

e−λT
λ

[
µH−(λ+µH )(1−e−µHT )

]
1+ e−λT

λ

[
µH−(λ+µH )(1−e−µHT )

] . Moreover, the price minus the expected refund claimed by a HI

customer who purchases at the high price is

E[pG]

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]
rH +

[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
rL

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]VH +VL
e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
+
[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
VL

=
λVH +µHVL
λ+µH

.

The only remaining parameters are µH , µL, and T . Let Φ3(µH , µL, T ) denote the firm’s profit

per unit time in this case. Then,

Φ3(µH , µL, T )

=γ
( µH
µH +µL

rL +
µL

µH +µL

λVH +µHVL
λ+µH

)
+ (β− γ)

( µH
µH +µL

rL +
µL

µH +µL

µH
λ+µH

rL

)
+ (1−β)

µH
µH +µL

rL−
2mµHµL
µH +µL

=VL +
µL

µH +µL

{
γ
λVH +µHVL
λ+µH

+ (β− γ)
µH

λ+µH
VL−VL− 2mµH

}
.
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If the term in the brackets is negative, then Φ3(µH , µL, T )< VL. Suppose the term is positive.

Note that Φ3(µH , µL, T ) is increasing in µL, so µ∗
L =∞. It follows that

Φ3(µH ,∞, T ) = γ
λVH +µHVL
λ+µH

+ (β− γ)
µH

λ+µH
VL− 2mµH

= βVL +
λ(γVH −βVL)

λ+µH
− 2mµH .

If γVH −βVL < 0, then Φ3(µH ,∞, T )<βVL <VL. Otherwise,

Φ3(µH ,∞, T )<βVL +
λ(γVH −βVL)

λ
− 2mµH = γVH − 2mµH <αVH .

Case 4: Suppose

rH ≤
VH +VL

e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

] , (S.44)

rH ≤
VH −VL

(
λ

λ+µH
e−λT − e−µHT e−λT + µH

λ+µH

)
− (2− e−µHT − e−λT ) c

λ+µH

λ
λ+µH

(1− e−λT ) + e−λT e−µHT
. (S.45)

Then both high-valuation type I and high-valuation type II customers purchase at both prices and

monitor for price guarantees if the purchase is made at the price rH . The purchase decisions of

customers can be summarized in Figure S.20.

Figure S.20 Customer Purchase Decisions in Case 4.

Because the firm’s profit is linear in the prices, we must have the optimal high price r∗H =

min
{
VH+VL

e−λT
λ

[
µH−(λ+µH )(1−e−µHT )

]
1+ e−λT

λ

[
µH−(λ+µH )(1−e−µHT )

] ,
VH−VL

(
λ

λ+µH
e−λT−e−µHT e−λT+

µH
λ+µH

)
−(2−e−µHT−e−λT ) c

λ+µH

λ
λ+µH

(1−e−λT )+e−λT e−µHT

}
.More-

over, the price minus the expected refund claimed by a high-valuation customer who purchases at

the high price is

E[pG]

=
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]
rH +

[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
rL
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≤
[
1− (1− e−µHT )e−λT − (1− e−λT )

µH
λ+µH

]VH +VL
e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
1 + e−λT

λ

[
µH − (λ+µH)(1− e−µHT )

]
+
[
(1− e−µHT )e−λT + (1− e−λT )

µH
λ+µH

]
VL

=
λVH +µHVL
λ+µH

.

The only remaining parameters are µH , µL, and T . Let Φ4(µH , µL, T ) denote the firm’s profit

per unit time in this case. Then,

Φ4(µH , µL, T )

≤α
( µH
µH +µL

rL +
µL

µH +µL

λVH +µHVL
λ+µH

)
+ (β− γ)

( µH
µH +µL

rL +
µL

µH +µL

µH
λ+µH

rL

)
+ (1−α−β+ γ)

µH
µH +µL

rL−
2mµHµL
µH +µL

=
µH

µH +µL
rL +α

µL
µH +µL

λVH +µHVL
λ+µH

+ (β− γ)
µL

µH +µL

µH
λ+µH

rL−
2mµHµL
µH +µL

=VL +
µL

µH +µL

{
α
λVH +µHVL
λ+µH

+ (β− γ)
µH

λ+µH
VL−VL− 2mµH

}
.

If the term in the brackets is negative, then Φ4(µH , µL, T )< VL. Suppose the term is positive.

Note that Φ4(µH , µL, T ) is increasing in µL, so µ∗
L =∞. It follows that

Φ4(µH ,∞, T ) = α
µHVL +λVH
λ+µH

+ (β− γ)
µH

λ+µH
VL− 2mµH .

The remaining analysis is the same as Case 1.3 in the proof of Lemma E.5 in E-Companion,

establishing that Φ4(µH ,∞, T )<max{VL, αVH}.

S.4.2 Proof of Lemmas and Propositions in Section S.2

Proof of Lemma S.4

We first show that for any v, it is impossible for J(rH) to take v− rH + (1− e−µHT )(rH − rL− c
µH

).

Suppose for a contradiction that

J(rH) = v− rH + (1− e−µHT )(rH − rL−
c

µH
). (S.46)

Then,

v− rH + (1− e−µHT )(rH − rL−
c

µH
)≥ µL

µH +µL
J(rH) +

µH
µH +µL

J(rL)− c

µH +µL
.

Putting (S.46) into the right-hand side yields

µH
µH +µL

{
v− rH + (1− e−µHT )(rH − rL−

c

µH
)
}
≥ µH
µH +µL

(v− rL−
c

µH
)
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⇒ v− rH + (1− e−µHT )(rH − rL−
c

µH
)≥ v− rL−

c

µH

⇒ (1− e−µHT )(rH − rL−
c

µH
)≥ rH − rL−

c

µH
,

which arrives at a contradiction given that c≤ µH(rH − rL). Therefore, equations (S.5) and (S.6)

can be reduced to

J(rH) = max
{
v− rH ,

µL
µH +µL

J(rH) +
µH

µH +µL
J(rL)− c

µH +µL
,0
}
, (S.47)

J(rL) = max{v− rL,0}. (S.48)

Next, we solve equations (S.47) and (S.48). Part (a) is immediate.

Suppose rL ≤ v < rL + c
µH

. Then, we can remove v − rH in (S.47). We show J(rH) = 0 by

contradiction. Suppose

J(rH) =
µL

µH +µL
J(rH) +

µH
µH +µL

(v− rL)− c

µH +µL
(S.49)

≥ 0. (S.50)

By (S.49), one can obtain J(rH) = v − rL − c
µH

< 0, contradicting (S.50). Therefore, J(rH) = 0.

This gives the solution in Part (b).

Suppose rL + c
µH
≤ v < rH . Again, we can remove v− rH in (S.47). Suppose J(rH) = 0. Then,

µL
µH +µL

J(rH) +
µH

µH +µL
(v− rL)− c

µH +µL
< 0,

which leads to µH
µH+µL

(
v− rL− c

µH

)
< 0, contradicting our supposition v≥ rL + c

µH
. Therefore,

J(rH) =
µL

µH +µL
J(rH) +

µH
µH +µL

(v− rL)− c

µH +µL
,

yielding J(rH) = v− rL− c
µH

.

Suppose v≥ rH . Then, we can remove 0 in (S.47). Suppose J(rH) = v− rH , which means

v− rH >
µL

µH +µL
J(rH) +

µH
µH +µL

(v− rL)− c

µH +µL

=
µL

µH +µL
(v− rH) +

µH
µH +µL

(v− rL)− c

µH +µL
.

This gives rise to
µH

µH +µL
(v− rH)>

µH
µH +µL

(v− rL−
c

µH
),

contradicting our supposition c≤ µH(rH − rL). Therefore,

J(rH) =
µL

µH +µL
J(rH) +

µH
µH +µL

(v− rL)− c

µH +µL
,

yielding J(rH) = v− rL− c
µH

. This completes the proof.
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Proof of Proposition S.10

According to customers behavior in Lemmas S.4 and E.4, it is never optimal to charge a low price

different from VL and VL− c
µH

. Therefore, we have two cases regarding the value of rL.

Case I: rL = VL− c
µH

By Lemma S.4, a type I customer (both high- and low-valuation) purchases immediately at rL but

waits at rH . By Lemma E.4, a low-valuation type II customer also chooses to purchase immediately

at rL but waits at rH .

For a high-valuation type II customer, according to Lemma E.4(d), if

VH ≥ rH +
µH(rH − rL)− c

λ
, (S.51)

then she purchases immediately at both prices. Otherwise, she purchases at rL but waits at rH .

Inequality (S.51) can be rewritten as

rH ≤
λVH +µHVL
λ+µH

. (S.52)

Case I.A: rH ≤ λVH+µHVL
λ+µH

≤ VH
In this case, customers’ purchase decisions can be summarized in Figure S.21.

Figure S.21 Customer Purchase Decisions in Case I.A.

Because the firm’s profit is linear in the prices, we must have the optimal high price rI,A,∗H =

λVH+µHVL
λ+µH

. The only remaining parameters are µH and µL. Let ΦI,A(µH , µL) denote the firm’s profit

per unit time in this case. Then,

ΦI,A(µH , µL) =β
[ µL
µH +µL

+
µH

µH +µL

](
VL−

c

µH

)
+ (α− γ)

[ µL
µH +µL

λVH +µHVL
λ+µH

+
µH

µH +µL

(
VL−

c

µH

)]
+ (1−α−β+ γ)

[ µL
µH +µL

µH
λ+µH

+
µH

µH +µL

](
VL−

c

µH

)
− 2mµHµL
µH +µL

=VL−
c

µH
+

µL
µH +µL

{
β
(
VL−

c

µH

)
+ (α− γ)

λVH +µHVL
λ+µH

+ (1−α−β+ γ)
µH

λ+µH

(
VL−

c

µH

)



47

−
(
VL−

c

µH

)
− 2mµH

}
.

The profit is no more than that of static pricing at VL if the term in the square brackets is

negative. Hereafter, we assume that the term in the brackets is positive.

To determine the optimal µH and µL, we solve the following optimization problem:

ΦI,A,∗ = max
µH≥0,µL≥0

ΦI,A(µH , µL).

Since the objective function is increasing in µL, µI,A,∗L =∞ at optimality. It follows that

ΦI,A(µH ,∞) = β
(
VL−

c

µH

)
+ (α− γ)

λVH +µHVL
λ+µH

+ (1−α−β+ γ)
µH

λ+µH

(
VL−

c

µH

)
− 2mµH .

It can be verified that if (α− γ)VH ≤ (1−β)VL, then ΦI,A(µH ,∞)<VL.

Case I.B: λVH+µHVL
λ+µH

≤ rH ≤ VH
In this case, customers’ purchase decisions can be summarized in Figure S.22.

Figure S.22 Customer Purchase Decisions in Case I.B.

Figure S.22 shows that customers never purchase at rH , so the profit in this case cannot exceed

VL− c
µH

, which is smaller than static pricing at VL.

Case II: rL = VL

By Lemma S.4(b)-(c), a low-valuation type I customer purchases at rL but leaves immediately at

rH , whereas a high-valuation type I customer purchases at rL and wait at rH . By Lemma E.4, a

low-valuation type II customer purchases at rL but leaves immediately at rH .

For a high-valuation type II customer, according to Lemma E.4(d), if

VH ≥ rH +
µH(rH − rL)− c

λ
, (S.53)
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then she purchases immediately at both prices. Otherwise, she purchases at rL but waits at rH .

Inequality (S.53) can be rewritten as

rH ≤
λVH +µHVL + c

λ+µH
. (S.54)

Case II.A: rH ≤ λVH+µHVL+c

λ+µH
≤ VH

In this case, customers’ purchase decisions can be summarized in Figure S.23.

Figure S.23 Customer Purchase Decisions in Case II.A.

Because the firm’s profit is linear in the prices, we must have the optimal high price rII,A,∗H =

λVH+µHVL+c

λ+µH
. The only remaining parameters are µH and µL. Let ΦII,A(µH , µL) denote the firm’s

profit per unit time in this case. Then,

ΦII,A(µH , µL) =γ
[ µL
µH +µL

+
µH

µH +µL

]
VL + (α− γ)

[ µL
µH +µL

λVH +µHVL + c

λ+µH
+

µH
µH +µL

VL

]
+ (1−α)

µH
µH +µL

VL−
2mµHµL
µH +µL

=VL +
µL

µH +µL

{
γVL + (α− γ)

λVH +µHVL + c

λ+µH
−VL− 2mµH

}
.

The profit is no more than that of static pricing at VL if the term in the square brackets is

negative. Hereafter, we assume that the term in the brackets is positive.

To determine the optimal µH and µL, we solve the following optimization problem:

ΦII,A,∗ = max
µH≥0,µL≥0

ΦII,A(µH , µL).

Since the objective function is increasing in µL, µII,A,∗L =∞ at optimality. It follows that

ΦII,A(µH ,∞) = γVL + (α− γ)
λVH +µHVL + c

λ+µH
−VL− 2mµH <αVH ,

where the above inequality holds because c≤ µH(rH − rL), rH ≤ VH , and rL = VL.
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Figure S.24 Customer Purchase Decisions in Case II.B.

Case II.B: λVH+µHVL+c

λ+µH
≤ rH ≤ VH

In this case, customers’ purchase decisions can be summarized in Figure S.24.

Figure S.24 shows that customers never purchase at rH , so the profit in this case cannot exceed

VL, which is the revenue collected by employing static pricing at VL.

To summarize, only Case I.A is possible to be optimal. This gives the solution in Proposi-

tion S.10(iii). This completes the proof.

Proof of Proposition S.11

It suffices to show under condition (S.7), if γ ≥ αβ, then the profit function Φ in equation (S.8) is

smaller than VL or αVH .

One can check

Φ = βVL +
(α− γ)λVH + (1−β)µHVL

λ+µH
−β c

µH
− (1−α−β+ γ)

c

λ+µH
− 2mµH

<β
α− γ
1−β

VH +
(α− γ)λVH + (α− γ)µHVH

λ+µH
−β c

µH
− (1−α−β+ γ)

c

λ+µH
− 2mµH

= αVH +
αβ− γ
1−β

VH −β
c

µH
− (1−α−β+ γ)

c

λ+µH
− 2mµH

<αVH ,

where the first inequality holds because of condition (S.7) and the last inequality holds because

γ ≥ αβ. This completes the proof.

Proof of Proposition S.12

According to customers behavior in Lemmas S.4 and 3, it is never optimal to charge a low price

different from VL and VL− c
µH

. Therefore, we have two cases regarding the value of rL.
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Case I: rL = VL− c
µH

By Lemma S.4, a type I customer (both high- and low-valuation) purchases immediately at rL but

waits at rH . By Lemma 3, a low-valuation type II customer also chooses to purchase immediately

at rL but waits at rH .

For a high-valuation type II customer, according to Lemma 3(d), if

VH ≥
(λ+µH)e−µHT (rH − rL− c

µH
)

λ
+ rL +

c

µH
=

(λ+µH)e−µHT (rH −VL)

λ
+VL, (S.55)

then she purchases immediately at both prices. Moreover, if the purchase is made at the price rH ,

they would keep monitoring the price until the price guarantee is applied/expired. If (S.55) is not

satisfied, she would purchase at rL but wait at rH . Inequality (S.55) can be rewritten as

rH ≤ VL +
λ(VH −VL)

(λ+µH)(e−µHT )
. (S.56)

Case I.A: rH ≤ VL + λ(VH−VL)
(λ+µH )(e−µHT )

and rH ≤ VH
In this case, customers’ purchase decisions can be summarized in Figure S.25.

Figure S.25 Customer Purchase Decisions in Case I.A.

Comparing VL + λ(VH−VL)
(λ+µH )(e−µHT )

with VH yields that

VL +
λ(VH −VL)

(λ+µH)(e−µHT )
≥ VH

if and only if λ
λ+µH

≥ e−µHT . Therefore, we have two subcases with respect to the range of T .

Subcase I.A.I: λ
λ+µH

≥ e−µHT .

In this subcase, the optimal high price must be r∗H = VH . Let ΦI,A,I(µH , µL, T ) denote the firm’s

profit in this case. Then,

ΦI,A,I(µH , µL, T )

=β
[ µL
µH +µL

+
µH

µH +µL

]
(VL−

c

µH
) + (α− γ)

{ µL
µH +µL

[
(1− e−µHT )(VL−

c

µH
) + e−µHTVH

]
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+
µH

µH +µL
(VL−

c

µH
)
}

+ (1−α−β+ γ)
[ µL
µH +µL

µH
λ+µH

+
µH

µH +µL

]
(VL−

c

µH
)− 2mµHµL

µH +µL

=VL−
c

µH
+

µL
µH +µL

{
β(VL−

c

µH
) + (α− γ)

[
(1− e−µHT )(VL−

c

µH
) + e−µHTVH

]
+ (1−α−β+ γ)

µH
λ+µH

(VL−
c

µH
)− (VL−

c

µH
)− 2mµH

}
.

Note that this expression is decreasing in T , so e−µHT
∗

= λ
λ+µH

. The profit in this subcase is

dominated by Subcase I.A.II below.

Subcase I.A.II: λ
λ+µH

≤ e−µHT .

In this subcase, the optimal high price must be r∗H = VL + λ(VH−VL)
(λ+µH )(e−µHT )

. Let ΦI,A,II(µH , µL, T )

denote the firm’s profit in this case. Then,

ΦI,A,II(µH , µL, T )

=β
[ µL
µH +µL

+
µH

µH +µL

]
(VL−

c

µH
) + (α− γ)

{ µL
µH +µL

[
(1− e−µHT )(VL−

c

µH
) + e−µHT

(
VL +

λ(VH −VL)

(λ+µH)(e−µHT )

)]
+

µH
µH +µL

(VL−
c

µH
)
}

+ (1−α−β+ γ)
[ µL
µH +µL

µH
λ+µH

+
µH

µH +µL

]
(VL−

c

µH
)− 2mµHµL

µH +µL

=VL−
c

µH
+

µL
µH +µL

{
β(VL−

c

µH
) + (α− γ)

[λVH +µHVL
λ+µH

− (1− e−µHT )
c

µH

]
+ (1−α−β+ γ)

µH
λ+µH

(VL−
c

µH
)− (VL−

c

µH
)− 2mµH

}
.

The profit is no more than that of static pricing at VL if the term in the square brackets is

negative. Hereafter, we assume that the term in the brackets is positive. To determine the optimal

µH , µL and T , we solve the following optimization problem:

ΦI,A,II,∗ = max
µH≥0,µL≥0,T≥0

ΦI,A,II(µH , µL, T ).

Since the objective function is increasing in µL, µI,A,II,∗L =∞ at optimality. It follows that

ΦI,A,II(µH ,∞, T ) =β(VL−
c

µH
) + (α− γ)

[λVH +µHVL
λ+µH

− (1− e−µHT )
c

µH

]
+ (1−α−β+ γ)

µH
λ+µH

(VL−
c

µH
)− 2mµH .

Note that the expression is decreasing in T , so T ∗ = 0, which means that no price guarantees

should be offered. The profit expression is simplified to

ΦI,A,II(µH ,∞,0) = β(VL−
c

µH
) + (α− γ)

λVH +µHVL
λ+µH

+ (1−α−β+ γ)
µH

λ+µH
(VL−

c

µH
)− 2mµH ,

which is exactly the same as that in Proposition S.10(iii).

Case I.B: VL + λ(VH−VL)
(λ+µH )(e−µHT )

< rH ≤ VH
In this case, customers’ purchase decisions can be summarized in Figure S.26.

Figure S.26 shows that customers never purchase at rH , so the profit in this case cannot exceed

VL− c
µH

, which is smaller than the revenue collected by employing static pricing at VL.
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Figure S.26 Customer Purchase Decisions in Case I.B.

Case II: rL = VL

By Lemma S.4(b)-(c), a low-valuation type I customer purchases at rL but leaves immediately at

rH , while a high-valuation type II customer purchases at rL but wait at rH . By Lemma 3(b), a

low-valuation type II customer purchases at rL but leaves immediately at rH .

For a high-valuation type II customer, according to Lemma 3(d), if

VH ≥
(λ+µH)e−µHT (rH − rL− c

µH
)

λ
+ rL +

c

µH
=

(λ+µH)e−µHT (rH −VL− c
µH

)

λ
+VL +

c

µH
,

(S.57)

then she purchases immediately at both prices. Moreover, if the purchase is made at the price rH ,

they would keep monitoring the price until the price guarantee is applied/expired. If (S.57) is not

satisfied, she would purchase at rL but wait at rH .

Inequality (S.57) can be rewritten as

rH ≤ VL +
c

µH
+
λ(VH −VL− c

µH
)

(λ+µH)(e−µHT )
. (S.58)

Case II.A: rH ≤ VL + c
µH

+
λ(VH−VL− c

µH
)

(λ+µH )(e−µHT )
and rH ≤ VH .

In this case, customers’ purchase decisions can be summarized in Figure S.27.

Figure S.27 Customer Purchase Decisions in Case II.A.
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Observe that all low-valuation customers purchase at rL but leave immediately at rH . Given

that rL is rarely offered in the Markovian pricing, low-valuation customers do not contribute any

revenue. Similar to Case II.A in the proof of Proposition S.10, one can verify that the optimal

profit cannot exceed αVH .

Case II.B: rH ≥ VL + c
µH

+
λ(VH−VL− c

µH
)

(λ+µH )(e−µHT )
and rH ≤ VH .

Figure S.28 Customer Purchase Decisions in Case II.B.

In this case, customers’ purchase decisions can be summarized in Figure S.28.

Figure S.28 shows that customers never purchase at rH , so the profit in this case cannot exceed

VL, which is the revenue collected by employing static pricing at VL.

To summarize, only Case I.A.II is possible to be optimal. The profit function in Case I.A.II is

the same as that in Proposition S.10(iii), implying that offering price guarantees cannot improve

the firm’s revenue. This completes the proof.

S.4.3 Proofs of Lemmas and Propositions in Section S.3

Proof of Proposition S.13

Due to the high monitoring cost, type II customers behave myopically as shown in Lemma 2, while

type I customers follow the strategy in Lemma E.4. According to Lemmas 2 and E.4, it is never

optimal to charge a low price rL different from VL − c1
µH

and VL. Therefore, we have two cases

regarding the value of rL.

Case I: rL = VL− c1
µH

By Lemma E.4(c), a low-valuation type I customer purchases immediately at rL and waits for a sale

at rH . By Lemma 2(b), a low-valuation type II customer purchases at rL but leaves immediately
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at rH . By Lemma E.4(d), a high-valuation type I customer purchases at both prices immediately

if

VH ≥ rH +
µH(rH − rL)− c1

λ
= rH +

µH(rH −VL)

λ
. (S.59)

If this condition is not satisfied, then she purchases at rL immediately and waits for a sale otherwise.

Inequality (S.59) can be rewritten as

rH ≤
λVH +µHVL
λ+µH

.

By Lemma 2(c), a high-valuation type II customer purchases immediately at both prices if VH ≥ rH .

Otherwise, she purchases at rL but leaves immediately at rH .

Subcase I.A: λVH+µHVL
λ+µH

< rH ≤ VH

In this case, the purchase decisions of customers can be summarized in Figure S.29.

Figure S.29 Customer Purchase Decisions in Subcase I.A.

Because the firm’s profit is linear in prices, we must have the optimal high price rI,A,∗H = VH . Let

ΦI,A(µH , µL) denote the firm’s profit per unit time in this case. Then,

ΦI,A(µH , µL) =β
[ µL
µH +µL

· µH
λ+µH

+
µH

µH +µL

]
(VL−

c1
µH

) + (α− γ)
[ µL
µH +µL

VH +
µH

µH +µL
(VL−

c1
µH

)
]

+ (1−α−β+ γ)
µH

µH +µL
(VL−

c1
µH

)− 2mµHµL
µH +µL

=VL−
c1
µH

+
µL

µH +µL

{
(α− γ)VH −

λ+ (1−β)µH
λ+µH

(VL−
c1
µH

)− 2mµH

}
.

The profit is no more than that of static pricing at VL if the term in the brackets is negative.

Hereafter, we assume that the term in the brackets is positive. To determine the optimal µH and

µL, we solve the following optimization problem:

ΦI,A,∗ = max
µH≥0,µL≥0

ΦI,A(µH , µL).
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Since the objective function is increasing in µL, µ∗
L =∞ at optimality. It follows that

ΦI,A(µH ,∞) =
βµH
λ+µH

(VL−
c1
µH

) + (α− γ)VH − 2mµH .

It can be verified that ΦI,A(µH ,∞) is concave in µH . Therefore,

µI,A,∗H =

{√
β(λVL+c1)

2m
−λ, if β(λVL + c1)− 2mλ2 > 0,

0, otherwise.

The corresponding prices are

rI,∗H = VH , rI,∗L = VL−
c

µI,A,∗H

,

and the firm’s profit is

ΦI,A,∗ =


(α− γ)VH +β

(
VL−

√
2m(λVL+c1)

β

)
− 2m

(√
β(λVL+c1)

2m
−λ
)
, if β(λVL + c1)− 2mλ2 > 0,

(α− γ)VH , otherwise.

Putting µ∗
H , r∗H , and r∗L into the condition c2 > µH(rH − rL) and c1 ≤ µH(rH − rL) yields the

constraint

c2 >
(√β(λVL + c1)

2m
−λ
)

(VH −VL) + c1,

c1 ≤
(√β(λVL + c1)

2m
−λ
)

(VH −VL) + c1,

where the second one holds automatically.

Subcase I.B: rH ≤ λVH+µHVL
λ+µH

≤ VH

In this case, the purchase decisions of customers can be summarized in Figure S.30.

Figure S.30 Customer Purchase Decisions in Subcase I.B.
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It is immediate to see r∗H = λVH+µHVL
λ+µH

. Let ΦI,B(µH , µL) denote the firm’s profit per unit time in

this case. Then,

ΦI,B(µH , µL) =α
[ µL
µH +µL

· λVH +µHVL
λ+µH

+
µH

µH +µL
(VL−

c1
µH

)
]

+ (β− γ)
[ µL
µH +µL

µH
λ+µH

+
µH

µH +µL

]
(VL−

c1
µH

)

+ (1−α−β+ γ)
µH

µH +µL
(VL−

c1
µH

)− 2mµHµL
µH +µL

=VL−
c1
µH

+
µL

µH +µL

{α(λVH +µHVL) + (β− γ)(µHVL− c1)
λ+µH

− (VL−
c1
µH

)− 2mµH

}
.

The profit is no more than that of static pricing at VL if the term in the brackets is negative.

Hereafter, we assume that the term in the brackets is positive. To determine the optimal µH and

µL, we solve the following optimization problem:

ΦI,B,∗ = max
µH≥0,µL≥0

ΦI,B(µH , µL).

Since the objective function is increasing in µL, µ∗
L =∞ at optimality. It follows that

ΦI,B(µH ,∞) =
α(λVH +µHVL) + (β− γ)(µHVL− c1)

λ+µH
− 2mµH

= (α+β− γ)VL +
λ(αVH − (α+β− γ)VL)

λ+µH
− (β− γ)c1

λ+µH
− 2mµH .

If αVH − (α+β− γ)VL ≤ 0, then ΦI,B(µH ,∞)< (α+β− γ)VL <VL. Otherwise,

ΦI,B(µH ,∞)< (α+β− γ)VL +
λ(αVH − (α+β− γ)VL)

λ
− (β− γ)c1

λ+µH
− 2mµH

= αVH −
(β− γ)c1
λ+µH

− 2mµH

<αVH .

Hence, the optimal revenue in this subcase is dominated by that under static pricing at either VL

or VH .

Case II: rL = VL

By Lemmas 2(b) and E.4(b), a low-valuation customer (both type I and II) purchases immediately

at rL but leaves immediately at rH . By Lemma E.4(d), a high-valuation type I customer purchases

at both prices immediately if

VH ≥ rH +
µH(rH − rL)− c1

λ
= rH +

µH(rH −VL)− c1
λ

. (S.60)

If this condition is not satisfied, then she purchases at rL immediately and waits for a sale otherwise.

Inequality (S.60) can be rewritten as

rH ≤
λVH +µHVL− c1

λ+µH
.

By Lemma 2(c), a high-valuation type II customer purchases immediately at both prices if VH ≥ rH .

Otherwise, she purchases at rL but leaves immediately at rH .
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Subcase II.A: λVH+µHVL−c1
λ+µH

< rH ≤ VH

In this case, the purchase decisions of customers can be summarized in Figure S.31.

Figure S.31 Customer Purchase Decisions in Subcase II.A.

Because the firm’s profit is linear in prices, we must have the optimal high price rII,A,∗H = VH .

Let ΦII,A(µH , µL) denote the firm’s profit per unit time in this case. Then,

ΦII,A(µH , µL) =γ
[ µL
µH +µL

· µH
λ+µH

+
µH

µH +µL

]
VL + (α− γ)

[ µL
µH +µL

VH +
µH

µH +µL
VL

]
+ (1−α)

µH
µH +µL

VL−
2mµHµL
µH +µL

=VL +
µL

µH +µL

{
(α− γ)VH −

λ+ (1− γ)µH
λ+µH

VL− 2mµH

}
.

The profit is no more than that of static pricing at VL if the term in the brackets is negative.

Hereafter, we assume that the term in the brackets is positive. To determine the optimal µH and

µL, we solve the following optimization problem:

ΦII,A,∗ = max
µH≥0,µL≥0

ΦII,A(µH , µL).

Since the objective function is increasing in µL, µ∗
L =∞ at optimality. It follows that

ΦII,A(µH ,∞) = VL + (α− γ)VH −
λ+ (1− γ)µH

λ+µH
VL− 2mµH

= (α− γ)VH + γ
µH

λ+µH
VL− 2mµH

= αVH − γ(1− µH
λ+µH

)VL− 2mµH

≤ αVH .

Hence, the optimal revenue in this subcase is dominated by that under static pricing at VH .
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Figure S.32 Customer Purchase Decisions in Subcase II.B.

Subcase II.B: rH ≤ λVH+µHVL−c1
λ+µH

≤ VH

In this case, the purchase decisions of customers can be summarized in Figure S.32.

Observe that both types of low-valuation customers only purchase at rL and leave immediately

at rH . Since rL is offered occasionally, the low-valuation customers do not contribute to the firm’s

revenue. Therefore, the optimal revenue in this subcase is dominated by that under static pricing

at VH .

To summarize, only Subcase I.A is possible to be optimal given that all other cases are dominated

by static pricing. The solution in Subcase I.A gives the high/low pricing in Proposition S.13(iii).

This completes the proof.

Before proving Proposition S.14, we first establish the following lemma.

Lemma S.7. Suppose c1 ≤ µH(rH − rL). In the presence of price guarantees, if rL = VL − c1
µH

and

rH >VH ≥ (λ+µH )e−µHT (rH−VL)
λ

+VL, then the high/low pricing strategy is not optimal.

Proof of Lemma S.7

Since rL = VL− c
µH

, by Lemma 3(c), a low-valuation type I customer purchases immediately at rL

but wait for a sale at rH . By Lemma 2(b), a low-valuation type II customer purchases at rL but

leaves immediately at rH .

When VH ≥ (λ+µH )e−µHT (rH−VL)
λ

+VL, by Lemma 3(d), a high-valuation type I customer purchases

immediately at both prices. Since VH ≤ rH , a high-valuation type II customer purchases at price

rL but leaves without a purchase at price rH . The decision of each segment of customers can be

summarized in Figure S.33.

Note that VH ≥ (λ+µH )e−µHT (rH−VL)
λ

+VL is equivalent to rH ≤ VL + λ(VH−VL)
(λ+µH )e−µHT

, so the optimal

high price is r∗H = VL + λ(VH−VL)
(λ+µH )e−µHT

. Let Φ(µH , µL, T ) denote the firm’s revenue per unit time in

this case. We have
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Figure S.33 Customer Purchase Decisions in this case.

Φ(µH , µL, T ) =(1−β)
µH

µH +µL
(VL−

c1
µH

) + γ
{ µH
µH +µL

(VL−
c1
µH

) +
µL

µH +µL

[
(1− e−µHT )(VL−

c1
µH

) + e−µHT r∗H

]}
+ (β− γ)

[ µH
µH +µL

+
µL

µH +µL

µH
λ+µH

]
(VL−

c1
µH

)− 2mµHµL
µH +µL

=VL−
c1
µH

+
µL

µH +µL

{
γ
λVH +µHVL
λ+µH

− γ(1− e−µHT )
c1
µH

+ (β− γ)
µH

λ+µH
(VL−

c1
µH

)− (VL−
c1
µH

)− 2mµH

}
.

If the term in the brackets is negative, then Φ(µH , µL, T ) < VL. Suppose the term is positive.

Note that Φ(µH , µL, T ) is increasing in µL, so µ∗
L =∞. It follows that

Φ(µH ,∞, T ) =γ
λVH +µHVL
λ+µH

− γ(1− e−µHT )
c1
µH

+ (β− γ)
µH

λ+µH
(VL−

c1
µH

)− 2mµH

=βVL +
γλVH −βλVL

λ+µH
− (β− γ)

c1
λ+µH

− γ(1− e−µHT )
c1
µH
− 2mµH .

If γλVH −βλVL < 0, then Φ(µH ,∞, T )<VL. Otherwise,

Φ(µH ,∞, T )<βVL +
γλVH −βλVL

λ
− (β− γ)

c1
λ+µH

− γ(1− e−µHT )
c1
µH
− 2mµH

=γVH − (β− γ)
c1

λ+µH
− γ(1− e−µHT )

c1
µH
− 2mµH

<αVH .

This completes the proof.

Proof of Proposition S.14

Due to the high monitoring cost, type II customers behave myopically as shown in Lemma 2, while

type I customers follow the strategy in Lemma 3. According to Lemmas 2 and 3, it is never optimal

to charge a low price rL different from VL − c1
µH

and VL. Therefore, we have two cases regarding

the value of rL. However, one can see that if rL = VL, then both types of low-valuation customers

would leave immediately without purchase when the price is high. Since the low price is offered
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occasionally, all low-valuation customers do not contribute to the firm’s revenue. Therefore, the

revenue in this case cannot exceed αVH given that only high-valuation customers make a purchase.

As a result, the case with rL = VL can never be optimal. Hereafter, we restrict our attention to the

case with rL = VL− c1
µH

.

By Lemma 3(c), a low-valuation type I customer purchases immediately at rL and waits for a sale

at rH . By Lemma 2(b), a low-valuation type II customer purchases at rL but leaves immediately

at rH . By Lemma 3(d), a high-valuation type I customer purchases at both prices immediately if

VH ≥
(λ+µH)e−µHT (rH − rL− c1

µH
)

λ
+ rL +

c1
µH

=
(λ+µH)e−µHT (rH −VL)

λ
+VL. (S.61)

Moreover, if the purchase is made at a high price rH , then she would keep monitoring the price

until the price guarantee is applied or expires. If this condition is not satisfied, then she purchases

at rL immediately and waits for a sale otherwise. Inequality (S.61) can be rewritten as

rH ≤ VL +
λ(VH −VL)

(λ+µH)e−µHT
.

For high-valuation type II customers, there are two possibilities: VH < rH and VH ≥ rH . If VH <

rH , they purchase at a price rL but leave without a purchase when the price is rH . Meanwhile, if

high-valuation type I customers purchase at both prices, then customers’ decision is the same as

in Figure S.33; therefore, by Lemma S.7, the high/low pricing is never optimal. If high-valuation

type I customers purchase at rL but wait for a sale at rH , then no customers of the four segments

purchase at the high price rH ; therefore, the high/low pricing strategy is also not optimal. To

summarize, when VH < rH , the high/low pricing strategy is not optimal. Hereafter, we restrict our

attention to the possibility with VH ≥ rH , in which case high-valuation type II customers purchase

at both prices but do not monitor for price refund.

Case I: VL + λ(VH−VL)
(λ+µH )e−µHT

< rH ≤ VH

In this case, the purchase decisions of customers can be summarized in Figure S.34.

The analysis and result are the same as in the case without price guarantees (Subcase I.A in the

proof of Proposition S.13). Hence,

ΦI,∗ =


(α− γ)VH +β

(
VL−

√
2m(λVL+c1)

β

)
− 2m

(√
β(λVL+c1)

2m
−λ
)
, if β(λVL + c1)− 2mλ2 > 0,

(α− γ)VH , otherwise.
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Figure S.34 Customer Purchase Decisions in Case I.

Figure S.35 Customer Purchase Decisions in Case II.

Case II: rH ≤ VL + λ(VH−VL)
(λ+µH )e−µHT

and rH ≤ VH

In this case, the purchase decisions of customers can be summarized in Figure S.35.

Comparing VL + λ(VH−VL)
(λ+µH )e−µHT

with VH yields that

VL +
λ(VH −VL)

(λ+µH)e−µHT
≥ VH ⇔ λ

λ+µH
≥ e−µHT .

Subcase II.A: λ
λ+µH

≥ e−µHT In this case, r∗H = VH . Let ΦII,A(µH , µL, T ) denote the firm’s profit

per unit time in this case. Then,

ΦII,A(µH , µL, T ) =γ
{ µL
µH +µL

[
(1− e−µHT )(VL−

c1
µH

) + e−µHTVH

]
+

µH
µH +µL

(VL−
c1
µH

)
}

+ (α− γ)
[ µL
µH +µL

VH +
µH

µH +µL
(VL−

c1
µH

)
]

+ (β− γ)
[ µL
µH +µL

µH
λ+µH

+
µH

µH +µL

]
(VL−

c1
µH

)

+ (1−α−β+ γ)
µH

µH +µL
(VL−

c1
µH

)− 2mµHµL
µH +µL

=VL−
c1
µH

+
µL

µH +µL

{
γ
[
VL−

c1
µH

+ e−µHT (VH −VL +
c1
µH

)
]

+ (α− γ)VH + (β− γ)
µH

λ+µH
(VL−

c1
µH

)− (VL−
c1
µH

)− 2mµH

}
.
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Note that this expression is decreasing in T , so e−µHT
∗

= λ
λ+µH

. The profit in this subcase is

dominated by Subcase II.B below.

Subcase II.B: λ
λ+µH

≤ e−µHT In this case, r∗H = VL + λ(VH−VL)
(λ+µH )e−µHT

. Let ΦII,B(µH , µL, T ) denote the

firm’s profit per unit time in this case. Then,

ΦII,B(µH , µL, T ) =γ
{ µL
µH +µL

[
(1− e−µHT )(VL−

c1
µH

) + e−µHT
(
VL +

λ(VH −VL)

(λ+µH)e−µHT

)]
+

µH
µH +µL

(VL−
c1
µH

)
}

+ (α− γ)
{ µL
µH +µL

[
VL +

λ(VH −VL)

(λ+µH)e−µHT

]
+

µH
µH +µL

(VL−
c1
µH

)
}

+ (β− γ)
[ µL
µH +µL

µH
λ+µH

+
µH

µH +µL

]
(VL−

c1
µH

)

+ (1−α−β+ γ)
µH

µH +µL
(VL−

c1
µH

)− 2mµHµL
µH +µL

=VL−
c1
µH

+
µL

µH +µL

{
γ
[λVH +µHVL

λ+µH
− (1− e−µHT )

c1
µH

]
+ (α− γ)

[
VL +

λ(VH −VL)

(λ+µH)e−µHT

]
+ (β− γ)

µH
λ+µH

(VL−
c1
µH

)− (VL−
c1
µH

)− 2mµH

}
.

Taking derivatives with respect to T yields

dΦII,B(µH , µL, T )

dT
=−γc1e−µHT + (α− γ)

λ(VH −V −L)

λ+µH
eµHTµH ,

d2ΦII,B(µH , µL, T )

dT 2
= γc1e

−µHTµH + (α− γ)
λ(VH −V −L)

λ+µH
eµHTµ2

H > 0.

Observe that ΦII,B(µH , µL, T ) is convex in T , so it suffices to compare the profits when e−µHT = 1

and e−µHT = λ
λ+µH

, respectively. One can check that when e−µHT = 1,

ΦII,B(µH , µL, T ) =VL−
c1
µH

+
µL

µH +µL

{
α
λVH +µHVL
λ+µH

+ (β− γ)
µH

λ+µH
(VL−

c1
µH

)

− (VL−
c1
µH

)− 2mµH

}
,

which is the same as ΦI,B(µH , µL) in Subcase I.B in the proof of Proposition S.13. Therefore, it is

dominated by static pricing.

When e−µHT = λ
λ+µH

,

ΦII,B(µH , µL, T ) =VL−
c1
µH

+
µL

µH +µL

{
γ
λVH +µHVL− c1

λ+µH
+ (α− γ)VH

+ (β− γ)
µH

λ+µH
(VL−

c1
µH

)− (VL−
c1
µH

)− 2mµH

}
.

Since the objective function is increasing in µL, µ∗
L =∞ at optimality. It follows that

ΦII,B(µH ,∞, T ∗) = γ
λVH +µHVL− c1

λ+µH
+ (α− γ)VH + (β− γ)

µH
λ+µH

(VL−
c1
µH

)− 2mµH .
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It can be shown that when λK+βc1 ≤ 0, ΦII,B(µH ,∞, T ∗) decreases in µH . Hence, µ∗
H = 0. The

corresponding profit is

ΦII,B(µH ,∞, T ∗) = αVH − γ
c1
λ
<αVH .

When λK +βc1 > 0, we solve for µH using the first-order condition, which gives

µII,B,∗H =

{√
λK+βc1

2m
−λ, if λK +βc1− 2mλ2 > 0,

0, otherwise.

Moreover, when λK+βc1 > 2mλ2, by e−µHT = λ
λ+µH

, we obtain T ∗ = 1√
λK+βc1

2m −λ
ln
√

K+βc1/λ

2mλ
, and

thus

r∗H = VL +
λ(VH −VL)

(λ+µH)e−µHT
= VH .

Putting µ∗
H , r∗H , and r∗L into the condition c2 > µH(rH − rL) and c1 ≤ µH(rH − rL) yields the

constraint

c2 >
(√λK +βc1

2m
−λ
)

(VH −VL) + c1,

c1 ≤
(√λK +βc1

2m
−λ
)

(VH −VL) + c1,

respectively, where the second one holds automatically.

Summarizing the results for Case I and Case II yields the following:

• If λK +βc1 > 2mλ2, then

ΦI,∗ = (α− γ)VH +β

(
VL−

√
2m(λVL + c1)

β

)
− 2m

(√
β(λVL + c1)

2m
−λ

)
,

ΦII,∗ = ΦII,B,∗ = (α− γ)VH + (β− γ)

1− λ√
λK+βc1

2m

VL− c1√
λK+βc1

2m
−λ


+ γ

1− λ√
λK+βc1

2m

VL− c1√
λK+βc1

2m
−λ

+
λ√

λK+βc1
2m

VH

− 2m
(√λK +βc1

2m
−λ
)
.

One can check that ΦII,∗ ≥ΦI,∗, so

Φ∗ = ΦII,∗ = (α− γ)VH + (β− γ)

1− λ√
λK+βc1

2m

VL− c1√
λK+βc1

2m
−λ


+ γ

1− λ√
λK+βc1

2m

VL− c1√
λK+βc1

2m
−λ

+
λ√

λK+βc1
2m

VH

− 2m
(√λK +βc1

2m
−λ
)
.
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• If λK +βc1 ≤ 2mλ2 <λβVL +βc1, then

ΦI,∗ = (α− γ)VH +β

(
VL−

√
2m(λVL + c1)

β

)
− 2m

(√
β(λVL + c1)

2m
−λ

)
,

ΦII,∗ = ΦII,B,∗ = αVH − γ
c1
λ
.

Hence,

Φ∗ = max
{

(α− γ)VH +β

(
VL−

√
2m(λVL + c1)

β

)
− 2m

(√
β(λVL + c1)

2m
−λ

)
, αVH − γ

c1
λ

}
.

In this case, the optimal high/low pricing policy reduces to that without price guarantees.

• If λβVL + βc1 ≤ 2mλ2, then ΦI,∗ = (α− γ)VH , and ΦII,∗ = αVH − γ c1λ . Hence, Φ∗ = max{(α−

γ)VH , αVH −γ c1λ }. In this case, the optimal high/low pricing policy is dominated by static pricing.

Comparing VL, αVH , and Φ∗ when λK+βc1 ≤ 2mλ2 shows that the pricing strategy is the same

as that in Proposition S.13. Comparing the profits when λK + βc1 > 2mλ2 yields the results in

Parts (i)-(iii). This completes the proof.


