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A Markov Chain Model of Military Personnel Dynamics

Personnel retention is one of the most significant challenges faced by the U.S. Army. Central to the problem is under-

standing the incentives of the stay-or-leave decision for military personnel. Using three years of data from the US Depart-

ment of Defense, we construct and estimate a Markov chain model of military personnel. Unlike traditional classification

approaches, such as logistic regression models, theMarkov chain model allows us to describe military personnel dynamics

over time and answer a number of managerially relevant questions. Building on the Markov chain model, we construct

a finite horizon stochastic dynamic programming model to study the monetary incentives of stay-or-leave decisions. The

dynamic programming model computes the expected payoff of staying versus leaving at different stages of the career of

military personnel, depending on employment opportunities in the civilian sector.We show that the stay-or-leave decisions

from the dynamic programming model possess surprisingly strong predictive power, without requiring personal charac-

teristics that are typically employed in classification approaches. Furthermore, the results of the dynamic programming

model can be used as input in classification methods and lead to more accurate predictions. Overall, our work presents

an interesting alternative to classification methods and paves the way for further investigations on personnel retention

incentives.
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1 INTRODUCTION

The size of the U.S. Army is often a function of competing budget constraints and mission requirements.

Moreover, the United States experiences fluctuating periods of economic growth and decline combined with

varying sentiments towards a propensity to serve. All of these affect how our nation assesses new recruits

into the armed forces. A similar scenario is evident when the Army takes action to influence the retention

(reenlistment) of enlisted soldiers. The Army uses forecasting methods to predict the number of reenlistment

eligible soldiers it must retain each fiscal year. When projections without incentives fall below requirements,

natural questions persist. Can we target incentive programs and policies to specific categories of individuals?

How can we identify those most likely to leave?

The U.S. Army cannot adequately answer the more precise question related to incentive size unless it

uses the most relevant data and techniques to predict personnel behavior. Current U.S. Army incentive

programs frequently target specific skills or military occupation specialties without rigorous analysis that

determines propensities to serve. There is also a serious lack of understanding of how individuals make

stay-or-leave decisions. There exists a research gap for separating individual retention propensity and for

explaining individual retention decisions.
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We model the career progression of enlisted personnel as a discrete-time homogeneous Markov chain

and estimate state transition probabilities using three years of reenlistment data from the US Department

of Defense. The estimated transition probabilities offer at least two benefits: (1) it provides an easily con-

structible method for evaluating the probabilistic progression of enlisted personnel through different career

states, and (2) it can be used in a subsequent stochastic dynamic programming model to understand reen-

listment behavior.

The Markov chain model allows us to answer managerial questions from policy makers. For example, it

allows easy computation of various statistics at both individual and aggregate levels. At the individual level,

it can be used to describe the probabilistic progression for military personnel at a given career stage. At the

aggregate level, it can be used to derive information on overall continuation rates and separation behavior,

which are critical inputs in developing retention programs.

Our estimation methodology only requires a data set with a limited time range rather than the complete

career time horizon of personnel cohorts. This should be viewed as an advantage, as the military is constantly

fluctuating in size, structure and policies. Our Markov chain estimation approach is not only more adaptable

and easier to implement than tracking cohort data, but also captures transition probabilities while omitting

obsolete data.

Building on our Markov chain estimation result, we construct a finite horizon stochastic dynamic pro-

gramming model to understand the stay-or-leave decision of a military personnel at different career stages.

Our model assumes that an individual is forward-looking and can rationally evaluate his expected payoff of

staying in the military, taking into account future career progressions and retirement benefits. The military

individual leaves the army if the expected payoff in the civilian sector dominates the expected payoff of stay-

ing in the army. Therefore, our model takes into account data on both military pay and civilian pay. Taken

together, the dynamic programming model allows us to calculate the reenlistment propensity of military

personnel at different career stages and therefore can be a useful tool for policy makers.

The dynamic programming model is a viable alternative to more traditional approaches based on statisti-

cal analysis. A popular approach to predicting the stay-or-leave decision is to use a binary logistic regression

model. We show that the dynamic programming approach can predict retention behavior with similar accu-

racy as a well-constructed logistic regression model. However, unlike the logistic regression model, the

dynamic programming model requires far fewer predictive variables. Our dynamic programming model

uses only grade and time-in-grade variables, while the logistic regression model uses many variables on

personal attributes. Using personal attributes for retention incentives often leads to perceived discrimination

and therefore can be problematic. The strength of the dynamic programming models is that it takes into

account expected future compensation, which is not incorporated in the logistic regression model. We also

consider a hybrid logistic regression model that incorporates the output from the dynamic programming

model and shows that the predictive power can be dramatically improved.



Authors' names blinded for peer review
Article submitted to Journal TBD; manuscript no. (xxxxxxxx) 3

As a by-product of the dynamic programming model, we obtain the difference in expected future compen-

sations between the military and civilian sectors based on a military personnel's career status. This allows

a tailored approach for retention incentives based on variables such as grade and time-in-grade, and has the

potential to generate substantial savings for the military.

The balance of the paper is organized as follows. Section 2 discusses some relevant literature. Section 3

presents the Markov chain model and its estimation from data. Section 4 presents an aggregated Markov

chain model based on grouped states. This section also presents functional manipulations of the transition

matrix that provide insightful steady state interpretations. In Section 5, we present a dynamic programming

model for the stay-or-leave decision and then in Section 6 we integrate the results from dynamic program-

ming with logistic regression results to assess the impact on predictive modeling. Section 7 concludes.

2 RELATED LITERATURE

Strategic workforce planning is well documented in many domains, to include the defense sector. Litera-

ture on the topic spans an array of disciplines and organizations such as the healthcare industry, the Federal

Bureau of Investigation, and other government agencies. Within government, the Government Accountabil-

ity Office studies principles for effective strategic workforce planning across selected agencies in order to

align human capital with strategic goals while the Department of Defense publishes a strategic workforce

plan on an annual basis (Government Accountability Office, 2003; Department of Defense, 2014). Most

research related to strategic workforce planning is policy driven and focuses on process improvements.

Department of Defense (2014) states that the technical solution for assessing total force capability versus

manpower requirements does not currently exist; our research improves upon the common analytical gap in

strategic workforce planning, particularly with predicting individual retention behavior.

The desire to attract, retain and develop talent is an increasing priority for businesses and organizations.

April et al. (2014) developed a simulation-optimization approach to strategic workforce planning called

OptForce, which ''offers a broad range of predictive analytics capabilities including sophisticated workforce

demand planning, fine grained employee retention models, and agent-based simulation forecasting.'' As

a decision making tool, OptForce goes beyond traditional approaches based on static assumptions and is

flexible enough for any human capital process. It is effective inmeasuring the impact of policies and practices

on retention by skill populations and can model the likely impact of broad compensation strategies; however,

our approach aims to build the framework for retention incentives that are more individually tailored by

attributes.

Military workforce planning inherently has an additional level of complexity than other environments. An

important distinction from strategic workforce planning in the general space is increased precision required.

For example, the lack of lateral entry paths is just one of many unique aspects to the military manpower

system. Wang (2005) classifies military workforce planning techniques into four categories: Markov chain
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models, computer simulation models, optimization models and supply chain management through Systems

Dynamics. Our approach addresses limitations described by Wang of Markov chain models in workforce

planning. By incorporating a hybrid Markov chain and dynamic programming framework, we include math-

ematical programming techniques that lends itself to optimization of outcomes such as minimizing cost.

Moreover, the size of the military produces adequate sample sizes, which Wang (2005) highlights as a lim-

iting aspect of many workforce environments.

Discrete-time Markov chains are frequently used to model and evaluate the long-term behavior of indi-

viduals in a variety of disciplines. Describing a process as a Markov chain and understanding its properties

enables informed decision making and policy guidance. Constructing and evaluating Markov chains has a

precedence in the medical industry, particularly in describing the progression and treatment of chronic dis-

eases and illness. A Markov chain model can be used to study long-run behavior even when only data with

limited time range is available. This property is important for certain applications, including the one in the

current paper.

Beck and Pauker (1983) describe how a Markov chain model can replace a analytical methods such as

decision trees within the medical decision making process. They demonstrate the utility of the fundamental

matrix, especially coupled with simulation. Craig and Sendi (2002) use discrete-time Markov chains to

evaluate treatment programs and health care protocols for chronic diseases. They present different types

of situations that make matrix estimation techniques unique. In particular, they describe a discrete-time

homogeneousMarkov model in which the estimation techniques use observation intervals that coincide with

the cycle length. This situation happens to align fairly accurately with the structure of the enlisted Army

career network we describe in this paper.

Markov models are also applied to the financial industry as described by Cyert et al. (1962). They devel-

oped a Markov model describing the behavior of accounts receivable balances and used matrix properties,

including the fundamental matrix, to make a variety of interpretations about the behavior of accounts at dif-

ferent stages of a time horizon. While the context of the Cyert et al. (1962) research is much different than

military personnel dynamics, we demonstrate the same utility of an implementable method for interpreting a

variety of system related questions by extending the use of the fundamental matrix for interpreting military

retention behavior.

Pfeifer and Carraway (2000) introduce a Markov chain modeling approach to model customer relation-

ships with a firm or business in which customer retention pertains to the potential for future customer-

relationships. They highlight the usefulness of Markov chain modeling for decision making and retention

situations that do not have algebraic solutions. We leverage their approach of using Markov chain models

for one-one-one direct marketing to individual customers rather than broad cohorts and extend the idea for

improving decision making and policies related to individuals in the military. Markov chain models are

applicable to almost any domain that involves predicting choice decisions, as evidenced by Kvan and Sokol
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(2006) in predicting National Collegiate Athletic Association (NCAA) basketball tournament outcomes.

Kvan and Sokol (2006) present a logistic regression/Markov chain approach in which a logistic regression

model is used to calculate transition probabilities. Our paper demonstrates a similar approach to combin-

ing methods; however we use a Markov Chain model as the starting point and also implement dynamic

programming.

A small subset of retention research uses dynamic programming, which can be described as an approach

for sequential decision making (Puterman, 2005). Using a modeling approach similar to Hall (2009) and

Gotz andMcCall (1983), the enlisted retention model can be structured as a manpower network. Hall models

Army officer retirement, while Gotz and McCall model a distinct proportion of the Air Force officer. Gotz

and McCall assert that, between the 10 and 20 year marks, retirement pay is the most important factor for

officer retention with officers making decisions in an optimal sequential fashion. In contrast to the aforemen-

tioned, enlisted personnel behave differently than commissioned officers in the military. The enlisted career

path and military experience is much different than that of officers, making it unreasonable to conclude that

retirement pay is as influential without a separate analysis.

The ability of current technology to accommodate more computationally intensive models suggests that

more complex dynamic programming methods are suitable for modeling optimal reenlistment behavior than

the simplified Annualized Cost of Leaving model produced byWarner and Goldberg (1984), which focus on

first and second terms of service and do not incorporate future uncertainty. Dissimilar to Asch et al. (2008),

we do not model the retention decision of all services or incorporate the potential transition from active duty

to the reserves. Asch et al. estimate model parameters that affect the decision to stay on active duty or leave,

and a parameter related to the variance of the stochastic shocks affecting the alternatives of being a civilian

or a reservist. Whereas Asch et al. (2008) estimate model parameters associated with the means, variances,

and covariance of the preference for active and reserve service, we computationally construct parameters,

specifically pertaining to transitions rates, from historical data sets.

Duala and Moffitt (1995) also used a stochastic dynamic programming model to estimate the effect of

reenlistment incentives onmilitary retention rates using panel data. Theymodel decision points every 4 years

after reenlistment up to twentieth year, but did not analyze the relevance of military occupation specialties.

The modeling approach proposed in this paper can be used in aggregate or decomposed by skill. We also

incorporate the entire career horizon and different parameter estimation techniques. Rather intuitively, in the

presence of unobserved heterogeneity, Duala andMoffitt (1995) also conclude that a higher military-civilian

pay difference significantly affects reenlistment behavior.

A distinct difference between modeling officer and enlisted retention decision lies in the gap between

career expectations. Identical retirement systems may shape intuition about similar officer and enlisted

retirement rate; however, the reality is that the probability of an enlisted personnel reaching retirement is

significantly less than officers. Recent statistics show that less than 15% of enlisted personnel, compared
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to 46% of officers, will become eligible for retirement annuity (Stewart and White, 2004; Henning, 2011).

This implies the relative importance of effectively modeling the enlisted retention decision prior to retire-

ment eligibility. The retention model proposed in Section 5 assumes that the goal of enlisted personnel is to

maximize pay and entitlements.

Expected civilian compensation is a key input regarding the decision to reenlist. Generally, officers are

provided equal or better compensation in the civilian workforce when they retire or separate from the mil-

itary. Due to lower average civilian education levels and variance in skill levels, enlisted trends do not

necessarily mirror the officer domain. Therefore, one of Hall (2009)'s primary assumptions, that an officer's

initial civilian pay is equivalent to their final military pay, is not reasonable for our model. Uncertainty

in future civilian pay compared to current military compensation adds to model complexity but cannot be

sacrificed for simplicity.

Duala and Moffitt (1995) acknowledged that ``military service is not completely substitutable for civilian

work'' and addressed civilian compensation by using estimates from Internal Revenue Service data on the

post-service civilian earnings of veterans, allowing the civilian wage profile to depend on time spent in

the military. Similarly, Asch et al. (2008) used data to map civilian wages with respect to total years of

experience using a civilian median-wage profile based on population surveys of corresponding education

ranges. Neither of the aforementioned models account for uncertainty of civilian wages. The method we use

to estimate expected civilian pay entitlements is described in Section 5.1.

Perhaps, our research can most accurately be described as a compliment to the Dynamic Retention Model

presented in the aforementioned Asch et al. (2008) and further extended in Asch et al. (2013). The Dynamic

Retention Model has a proven record for influencing overarching military policies and modeling the effects

of compensation decisions such as retirement reform. However, it is limited to analyzing the behavior of

individuals in the aggregate, whereas our model seeks to provide a method for influencing the behavior of

specific individuals based on certain attributes. We contend that the ability to target retention incentives by

skill and attribute can contribute to significant budget efficiencies.

3 A MARKOV CHAIN MODEL FOR ENLISTED MILITARY PERSONNEL

This section introduce a discrete-time Markov chain model for enlisted Military Personnel. We use three

years of historical data to estimate parameters for the Markov Chain.

3.1. Model Description

Our model considers individuals in the rank of Private (E1) through Sergeant Major (E9). However, since

grades E1 through E4 belong to the same skill level category and have similar behavior patterns and decen-

tralized. States refer to a combination of grade and years-in-grade. The state space is augmented by volun-

tary and involuntary separations, which are modeled as two separate absorbing states. Our model therefore

ignores the possibility of returning to the military after voluntary and involuntary separations.
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Figure 1 State Transition Diagram of the Markov Chain Model

The state definition in our model should be contrasted with some previous work where state is defined

as an individual's pay grade and/or time-in-service (see, e.g., Hall, 2009). Note, however, that Hall (2009)

models officers who are typically promoted in cohort. Compared with enlisted personnel, the variation in

state transition is much smaller. For enlisted promotion criterion, which is relevant in our context, a minimum

time-in-service requirement is typically stipulated. To incorporate time-in-service promotion criterion, we

impose minimum time-in-grade requirement in the state transition. For example, an SL1 is not eligible for

promotion to E5 with less than two years in grade and a E5 is not eligible for promotion to E6 with less than

two years in grade, etc. The minimum time-in-grade captures the observations from the data quite well, as

there are rarely violations. It also supersedes time-in-service requirements.

Figure 1 shows the state transition diagram for our model. In total, there are 79 states, including voluntary

and involuntary separations as two absorbing states. Note that for each grade, there is a maximum time in

grade. For example, for grade E5, the maximum time-in-grade is 11 years.

3.2. Data Description

In order to estimate parameters for the Markov chain, we analyze three years of historical data for enlisted

personnel obtained from Headquarters, U.S. Army, Deputy Chief of Staff, Army G-1 (Personnel). Our data
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covers the period from October 2007 to September 2009. Our main data sources are personnel inventory

and transaction files in Total Army Personnel Database (TAPDB). The personnel inventory file contains end

of month snapshots of the active Army enlisted force each month. It includes a large number of personal

attribute fields for each enlisted personnel. The transaction file is compiled at the end of each month and

includes a record for any major personnel transaction occurred during the month. We merge inventory and

transaction files by social security number (SSN) and date. Table 1 describes sample variables from TAPDB

inventory and transaction files.

Table 1 Description of inventory and transaction data variables
Extract Variable Definition
Transactions SSN Social Security Number pertaining to the Soldier who

executed the transaction
Transactions Transaction Date Actual date of transaction (DDMMYYYY)
Transactions Transaction Category Major category type of transaction (Gain, Loss,

Extension, Promotion, Demotion)
Transactions Gain Type Description of specific type of gain to active duty (Prior

Service, Non-Prior Service, Immediate Reenlistment
Transactions Loss Type Description of specific type of loss from active duty

(Expiration of Term of Service, Retirement, Misconduct,
Physical Disability, Dropped From Rolls, Entry Level
Separation, Hardship or Parenthood, Pregnancy, Unfit,
Unsatisfactory Performance, Reduction In Force,
Early Release, Early Retirement, Immediate
Reenlistment, Other)

Inventory Pay Grade Pay grade scale of individual (E1 to E9)
Inventory Time-in-Grade Months of service at current grade (converted to years)
Inventory Time-in-Service Total months of active service (converted to years)
Inventory AFQT Armed Forces Qualification Test score
Inventory Education Level of education centered on high school graduate
Inventory Marital Status Marital status of married, divorced or single
Inventory Dependents Number of minor dependents
Inventory Race Racial category of white, black, hispanic or asian/other
Inventory Reenlistment Quantity Number of previous reenlistments
Inventory Deployed Binary category equals 1 if previously deployed or 0

if never deployed
Constructed MSD Months since previous deployment
Constructed Age Age centered on 18 years
Constructed Employment Employment rate of change (12 month moving average)

Descriptive statistics of the data used for predictive modeling are provided in Appendix A. Not included

are statistics for variables in Table 1 which are not used for prediction, such as gains, promotions and invol-

untary losses. Additionally, education level statistics are not presented due to the unique coding system

adopted by the Army. However, 98.6% of individuals completed a level of schooling equivalent to a high

school degree and 9.2% of enlisted individuals have some amount of eduction beyond high school.
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3.3. Estimation Procedure

We use the historical data described in Section 3.2 to estimate the transition matrix for the discrete-time

Markov chain model. Our estimation procedure follows Craig and Sendi (2002). Even though our data are

collected on a monthly interval, we use a cycle length of one year. This choice allows us to accommodate

seasonality in promotions observed in the data. Since we have complete observations for three full years, we

use a version of the estimation procedure where the observation intervals coincide with cycle length (Craig

and Sendi, 2002).

An important assumptionwemake is that the transition probabilities are stationary over time.This assump-

tion is not unreasonable asmilitary operations are fairly consistent during the three year observational period.

With the stationarity assumption, the observed transitions in all three years can be pooled together to form

an observed one-year transition count matrix.

We also manipulate the data to more honestly reflect involuntary separation. Recall that in our state def-

inition, there is a maximum time-in-grade allowed for each grade, which is also called a retention control

point (RCP). When a RCP is reached for an enlisted individual, all our original records show voluntary

separation. In reality, the voluntary separation decision is made with known information about promotion

potential and a barrier for continued transition within the current grade. Therefore, data for individuals who

reached an RCP are treated as involuntary losses even if a record depicts a voluntary loss.

For notational simplicity, let m denote the number of states. For our model, m is the constant 79. The

first step in our estimation procedure is to produce the transition count matrix C = [cij], which is anm×m

matrix. The entry cij represents the total number of yearly transitions from state i to state j. We assume

without loss of generality that the states are ordered such that the last two states are voluntary and involuntary

losses, which are also the absorbing states.

Let them×mmatrixM = [θij] denote the transition matrix, where θij is the probability of moving from

state i to state j by the end of a cycle. With the observed count matrix C, the maximum likelihood estimate

of the transition probability θij is the row proportions of the counts

θij =
cij∑m

j=1 cij
, ∀ i, j. (1)

We also have θm−1,m−1 = θm,m = 1, because the last two states are absorbing states. Since we assume there

is no demotion, entries below the diagonal inM are equal to zero. Moreover, the transition probabilities in

the diagonal for non-absorbing states are also equal to zeros since time-in-grade uses the same measurement

as the cycle length.

3.4. The Transition Matrix

The state progression of an enlisted personnel follows theMarkov chain described in Figure 1 with transition

matrixM . There are four distinct types of transitions:
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• Remain in the same grade (time-in-grade increases by 1)

• Promote to the next grade (time-in-grade equals 0)

• Exit the system due to involuntary separation

• Exit the system due to voluntary separation

Since the estimated transition matrixM is a 79×79matrix, we choose not to report the full details in the

paper. Instead, we report slices of the estimates to give a flavor of the result.

3.4.1 Continuation within Grade

The calculation for continuation within the same grade requires tracking individual records from one year

to the next. Moreover, individuals are only included in the continuation counts if they are in the initial data

set at time 0. Figure 2 shows the probability of an individual continuing within the same grade from one year

to the next. For example, a SL1 individual has an 87.8% probability of beginning and ending their second

year in grade without advancing in grade due to promotion or leaving the Army. The probability decreases

to 43.4% during the fourth year in SL1.

Figure 2 Continuation probabilities within grade

3.4.2 Promotions

Promotion counts from state to state are calculated in the same manner as voluntary and involuntary

losses. The Army applies retention control points to each grade, which force an individual to exit the military

when reached. Retention control points are enforced based on an individual's time-in-service and vary by

grade. Figure 3 shows the decrease in promotion probability by grade (to E6 and above) and Figure 4 shows

the probability of promotion for each year of service for semi-centralized or centralized Army promotion

systems to E6 through E8. The time-in-grade axis reflects the number of years spent in the previous pay

grade.



Authors' names blinded for peer review
Article submitted to Journal TBD; manuscript no. (xxxxxxxx) 11

Figure 3 Promotion probabilities by grade

Figure 4 Probability of promotion to grade (by time-in-grade of previous grade)

3.4.3 Involuntary Losses

Involuntary losses include all administrative and adverse losses and can be calculated from the loss trans-

actions for the relevant periods. Involuntary losses occur primarily during the grades of E5 and lower.

Involuntary loss rates from fiscal years 2006 through 2009 are shown in Table 2.

3.4.4 Voluntary Losses

Voluntary losses are composed of two loss sub-categories: non-disability retirement (NDR) and expiration

of term of service (ETS). Voluntary losses occur at all grade levels with the rates increasing at higher grade

and higher time-in-grade combinations. This intuitive result is depicted in Figure 5 where the highest volun-

tary loss rates occur at grade E7 with greater than 10 years in grade. Voluntary loss counts are generated in

the same manner as involuntary losses as transaction counts are merged with inventory data. It can be seen

from Figure 6 that the probability of an individual choosing to leave voluntarily outweighs the probability

of any type of involuntary loss at grade E5 and beyond. It is also evident that loss probabilities from both

major categories are noticeably low (< 5%) at the grade of E6; particularly likely for voluntary separations

due to the associated time-in-service requirements and the proximity to retirement eligibility.
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Table 2 CMF 11 Average Involuntary Loss Rates FY06-09

TIG E4 E5 E6 E7 E8 E9
0 27.6% 4.7% 2.4% 2.3% 0.9% 0.0%
1 11.6% 7.2% 3.6% 2.2% 0.8% 0.4%
2 10.0% 10.2% 4.0% 2.5% 0.9% 1.4%
3 14.7% 14.2% 4.0% 1.8% 0.7% 1.3%
4 18.0% 12.9% 4.9% 1.2% 1.0% 6.1%
5 20.2% 10.9% 4.0% 0.9% 0.8% 0.0%
6 18.0% 19.4% 3.5% 1.4% 2.3% 0.0%
7 20.9% 8.4% 2.5% 2.6% 0.0% 0.0%
8 22.5% 20.1% 0.7% 2.2% 0.0% 0.0%
9 21.1% 0.0% 0.9% 1.3% RCP 0%
10 33.1% RCP 0.7% 7.6% - 0%
11 39.5% - 2.3% 5.0% - RCP
12 RCP - 2.9% 0.0% - -
13 - - 12.5% RCP - -
14 - - 0.0% - - -
15 - - RCP - - -

Figure 5 Probabilities of voluntary loss from each state in a period

Figure 6 Comparison of loss probabilities in a single period by grade
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4 AN AGGREGATED MARKOV CHAIN MODEL

The Markov chain model presented in Section 3 defines state as grade and time-in-grade combinations. As

we showed in Section 3, the model allows us to make many detailed observations. This section considers

an aggregated model where the states are grouped to the grade level. Grade is arguably the most widely

used unit of analysis for military personnel planning. The aggregated model can be used to answer many

managerially relevant questions for different grades. We also use the aggregated Markov chain to validate

our model using a chi-squared goodness-of-fit test. We return to the expanded Markov chain in Figure 1 in

subsequent section when we incorporate a dynamic programming model for military personnel retention.

4.1. State Aggregation by Grade

We aggregate states by grade to form a new Markov chain. The states for each grade level forms a state

in the new model. For example, (SL1_0, SL1_1, . . . , SL1_12) makes up the state s1. In this fashion, The

six Grade categories (Skill Level 1 through E9) make up states s1 to s6. s7 and s8 represent voluntary and

involuntary loss states, respectively. Figure 7 shows the state transition diagram for the aggregated Markov

chain.
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Figure 7 State Transition Diagram for the Aggregated Markov Chain Model

We use an 8×8matrix P = [pij] to represent the transition matrix of the aggregated Markov chain, where

pij denotes the transition probability from state si to state sj . The transition matrix P can be generated from

the transition matrix M . The idea is that transitions within the same grade level are considered transitions
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back to the same state in the aggregated model, while only promotions or voluntary/involuntary separa-

tions are considered transitions between states. Clearly, we have p77 = p88 = 1 because states s7 and s8 are

absorbing states. The resulting transition matrix P is given by

P =



0.6691 0.1588 0 0 0 0 0.0646 0.1075

0 0.5335 0.2542 0 0 0 0.1495 0.0627

0 0 0.6992 0.1110 0 0 0.1408 0.0490

0 0 0 0.8100 0.0800 0 0.1000 0.0100

0 0 0 0 0.8150 0.0499 0.1282 0.0069

0 0 0 0 0 0.8380 0.1554 0.0066

0 0 0 0 0 0 1.0000 0

0 0 0 0 0 0 0 1.0000



. (2)

4.2. Validation and Bootstrap Confidence Intervals for P

The transition matrix for the Markov chain is validated using a Chi-square goodness-of-fit test applied to

our sample data (Montgomery and Runger, 2003). The Chi-square goodness-of-fit test provides a useful

measure of fit to our data as described by Anderson and Goodman (1957). A test of the difference between

the observed counts at each state in an initial period 0 and final period 3 are evaluated using the transition

probability matrix P .

LetO be the vector of initial observed counts andO′ be the vector of counts after three period. Under the

estimated transition matrix P , the vector of expected count is given by E = OTP 3, where Ei denotes the

expected count in state i. The test statistic is given by

χ2
0 =

8∑
i=1

(O′
i −Ei)

2

Ei

(3)

Table 3 lists the values of vectors O, O′, and E. The test statistic χ2
0 = 6.7604, which is less than χ2

0.05,7 =

14.067. Hence the test is insignificant at P-value 0.05, implying that the transition matrix is a good fit.

Table 3 Expected and observed counts for the goodness-of-fit test
Period s1 s2 s3 s4 s5 s6 s7 s8

O 7752 1869 1692 779 258 54 0 0
O′ 2259 1690 1762 862 285 67 3060 2419
E 2322.1 1624.7 1718.2 877.9 302.2 66.6 3064.6 2427.0

Next, we use the bootstrap method to assess the uncertainty of the maximum likelihood estimate and to

construct confidence intervals for the transition matrix. Let C̃ be the aggregated count matrix. Let tr denote
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the total number of transitions for row r. We bootstrap row r by sampling tr transitions with replacement

from the observed tr transitions. For example, since there are 69,835 transitions in the first row of C̃, 69,835

draws are taken from the corresponding empirical distribution to form a new set of transition counts for row

1. This process is repeated for each row until a new count matrix C∗ is formed for each bootstrap sample.

The new set of transition counts for row r of the count matrix is used to construct a new set of transition

probabilities and a new transition probability matrix, P ∗. The process is repeated for a number of bootstrap

samples until a confidence interval can be constructed for the function.

Table 4 reports the confidence interval for the transition matrix based on 500 bootstrap samples. The

confidence intervals are created from a collection of bootstrapped transition matrices, which approximate

sampling distributions. The goal of constructing bootstrap confidence interval is to calculate dependable

confidence limits for a parameter of interest θ from the bootstrap distribution of an estimator θ̂. Having

chosen to use a particular θ̂, bootstrapping is a general methodology to measure how accurate θ̂ is as an

estimator of θ.

We can use bootstrapping to assess the uncertainty of each entry in the transition matrix as well as any

function of the transition matrix. While sensitivity analysis is a very helpful technique to investigate the

behavior of a Markov model, Craig and Sendi (2002) claim that it should not be used to construct a con-

fidence interval because it does not take into account model restrictions and complex dependency of all

the transition probabilities. To assess the precision of this estimate, it substitutes considerable amounts of

computation in place of theoretical analysis and is more accurate than standard errors when dealing with

nonparametric confidence intervals (DiCiccio and Efron, 1996).

Table 4 Confidence intervals for transition probabilities based on 500 bootstrap samples
Initial State s1 s2 s3 s4

s1 (0.66899, 0.66929) (0.15871, 0.15896) - -
s2 - (0.53333, 0.53390) (0.25387, 0.25438) -
s3 - - (0.69906, 0.69961) (0.11078, 0.11119)
s4 - - - (0.80959, 0.81028)
s5 - - - -
s6 - - - -

Initial State s5 s6 s7 s8

s1 - - (0.06452, 0.06468) (0.10733, 0.10753)
s2 - - (0.14929, 0.14971) (0.06262, 0.06290)
s3 - - (0.14046, 0.14088) (0.04888, 0.04915)
s4 (0.07978, 0.08027) - (0.09979, 0.10033) (0.00990, 0.01007)
s5 (0.81405, 0.81525) (0.04975, 0.05042) (0.12776, 0.12888) (0.00682, 0.00707)
s5 - (0.83741, 0.84006) (0.15339, 0.15603) (0.00627, 0.00684)
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4.3. Interpretations

One of the benefits of the Markov chain model is that it allows us to draw conclusions on long-run statistics,

even though our model is only estimated from data with a limited time range. In this section, we expect some

interesting interpretations from our model.

By partitioning the matrix P as

P =

 Q R

0 I

, (4)

we expose a useful concept in the analysis ofMarkov chains, the fundamental matrix. From standardMarkov

chain theory, we can compute the fundamental matrix as

N =



3.0221 1.0287 0.8694 0.5079 0.2196 0.0677

0 2.1436 1.8115 1.0583 0.4577 0.1410

0 0 3.3245 1.9422 0.8399 0.2587

0 0 0 5.2632 2.2760 0.7011

0 0 0 0 5.4054 1.6650

0 0 0 0 0 6.1728


. (5)

The (i, j)-th entry of N , nij , is the expected number of transitions (visits) to state j before being absorbed,

starting in state i. The fundamental matrix extends the interpretation of our data. For example, thematrixNR

provides probability estimates of being absorbed into each of the absorbing states, s7 and s8. By definition,

the fundamental matrix assumes an infinite number of transitions. The career path of an enlisted personnel

has a finite timeline, typically 30 years. Therefore, we expect that computations based on the fundamental

matrix has certain level of error. In Appendix B, we show that the error from using an infinite summation is

very small. Similarly, we formulate the variance of N using Markov chain theory, which is given by

V =



6.1108 2.3234 4.1552 4.5804 2.1065 0.7630

0 2.4515 6.9516 8.9618 4.2805 1.5795

0 0 7.7276 14.7298 7.5344 2.8682

0 0 0 22.4377 17.1490 7.4624

0 0 0 0 23.8130 16.1183

0 0 0 0 0 31.9311


. (6)

where each element of V provides the variance for the number of periods one expects to be in state j given

a start in state j.



Authors' names blinded for peer review
Article submitted to Journal TBD; manuscript no. (xxxxxxxx) 17

Figure 8 shows the probability of remaining in the Army each year over a horizon of 30 years when

starting in state s1 (Skill Level 1). This graph is interesting because it allows us to see how changes to short-

term behavior can affect long-term continuation rates. From Figure 8, we can see that there is only a 45%

probability that an enlisted individual will remain in the Army beyond 4 years. Only 17% can be expected

to remain in the Army for 10 years. Whether these rates are acceptable is a strategic decision; however, it is

useful to know whether short term policies shift the curve in a desirable direction.

Figure 8 Continuation rates over 30 year time horizon

From the fundamental matrix (5), the expected amount of time an individual spends in skill level 1 is

3.02 years. The expected amount of time an individual spends as an E7 is 0.51 years. Even though this

information is interesting, it is not intuitive because it incorporates the probability of not reaching the state.

A somewhat related, but perhaps more interesting question, is the expected amount time someone spends in

grade E7 given he/she reaches the grade. Manipulations of the fundamental matrixN can be used to answer

a number of such questions. Such an approach is taken by many authors, including Doyle and Snell (2000)

and Cyert et al. (1962).

First, the row sum of matrix N ,

T =



5.7153

5.6121

6.3652

8.2402

7.0704

6.1728


(7)

gives the expected number of periods before being absorbed from each state. The interpretation of T is quite

intuitive. The expected number of cycles or periods before being absorbed into a loss state is 5.7 years.
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This expectation increases with an increase in grade due to the increased probability of remaining until the

retirement threshold. The peak is upon reaching the grade of E7 when an individual is expected to remain

for 8.2 years until being absorbed, presumably as a voluntary loss category of retirement. Beyond the grade

of E7, the expected time until absorption decreases due to the finite time horizon of mandatory retirement

or reduced incentive for delaying retirement.

Second, the probability of moving from each of the transient states to an absorbing state is given by the

matrix NR, which is shown below:

NR=



0.5609 0.4390

0.7619 0.2378

0.8102 0.1898

0.9270 0.0730

0.9517 0.0483

0.9593 0.0407


. (8)

The elements in NR has interesting interpretations. For example, the probability of eventually becoming a

voluntary loss 0.5609 is higher than the probability of becoming an involuntary loss 0.4390 when starting

from the initial state, s1. Despite the significantly higher involuntary loss rates of skill level 1 individu-

als, these probabilities account for expected future transitions to other states. We can see that the disparity

between absorbing into the two loss states diverges significantly as the grade level progresses.

It is possible to use bootstrap method to estimate the confidence intervals for the absorption times from

different starting states. Consider state s1, which has expected absorption time of 5.7153 years. The results of

500 bootstrap samples are shown in Figure 9. Using an two-tailed confidence interval, the 95% confidence

interval for the expected absorption time is [5.715,5.721].

The probability of ever making a transition into state j starting in state i is given by

fij =
nij

njj

where nij is the (i, j)-entry of N (Ross, 1996). Let F = [fij]. We have

F =



0.6691 0.4799 0.2615 0.0965 0.0406 0.0110

0 0.5335 0.5449 0.2011 0.0847 0.0228

0 0 0.6992 0.3690 0.1554 0.0419

0 0 0 0.8100 0.4211 0.1136

0 0 0 0 0.8150 0.2697

0 0 0 0 0 0.8380


. (9)
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Figure 9 500 bootstrap samples of absorption time from state 1

So, what is the probability of an enlisted personnel ever reaching the grade of E9? Based onF , the probability

is close to 1%. In fact, an individual has less than a 5% probability of reaching the grade E8. Perhaps equally

indicative of the likelihood of reaching the grade of E9 is that the probability of reaching this state is still

less than 5% (0.0419) when an individual reaches the grade E6.

5 A DYNAMIC PROGRAMMINGMODEL FOR MILITARY PERSONNEL RETENTION

Based on the Markov chain estimated in Section 3, we construct a Markov decision process (MDP) model

for a military personnel's stay-or-leave decision at each point of his/her career. The model captures career

path dynamics, includingmilitary pay and career advance opportunities.We assume that in making a stay-or-

leave decision, a military personnel weighs the expected military pay, including possible retirement benefits,

against the expected pay from civilian job opportunities. Even though not explored in the present paper, our

model can be used to shape and target incentives to military personnel.

The model is formulated as a finite-horizonMDP using an optimal stopping framework (Puterman, 2005).

The state i is the grade and time-in-grade combination in each period. Important assumptions are made in

order to develop the model, such as the assumption that when an individual decides to leave the military,

they cannot return to the military at later periods in the time horizon. We assume individuals do not change

their skills during the time horizon and all military service is conducted while on active duty. The reclassifi-

cation rate is historically less than 1%, even during periods of volatile force shaping drawdowns of enlisted

strength. Although promotions, involuntary losses and retention decisions occur at monthly intervals, fol-

lowing Section 3, a simplifying assumption is made to define the period length as one year. The objective

of the model is to maximize total expected payoff over the finite horizon.
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Since leaving the military is modeled as a decision, the transition probabilities in our model follows the

transition probabilities estimated in Section 3, conditional on not being a voluntary loss. Let qij denotes the

probability of transitioning from state i to state j in the following period, we have

qij =
θij

1−
∑

j ̸=VL θij
, ∀i, j. (10)

The state space includes all states for the Markov chain estimated in Section 3 except the voluntary loss

state, which we denote by V L. Appendix C provides a notation dictionary.

5.1. Estimating Civilian Pay

A key input the MDP model is the expected civilian pay in the event of choosing to leave the military. As

mentioned earlier, it is not reasonable to assume initial civilian pay is equal to the last military pay. We

assume the MDP model is constructed for a specific military skill, which is cross-mapped to comparable

civilian occupations using the Occupational Information Network (O*NET).

Table 5 illustrates a distribution of potential civilian employment for an enlisted personnel with a military

occupation of Infantry. The second column list the comparable civilian occupations for an infantryman. The

third column reports the number of workers employed in each of the civilian occupation. The empirical

distribution of the different occupations is reported in the second-to-last column, where we use αx to denote

the proportion of workers employed in occupation x. The compensation for each occupation is reported as a

multiple, δx of the military compensationmi,t. By using a multiplier to military compensation rather than a

constant value (i.e median of civilian occupation x), we account for an increase in expected pay as military

experience increases. It is reasonable to assume that two individuals with the same military occupation

specialty and expected civilian occupation can expect different levels of pay attributed to technical acumen

and leadership experience.

Table 5 Cross-Mapping of Military to Civilian Skills (Enlisted Infantryman)

i Civilian Occupation Workers (1,000) αx (%) δx

1 Training and Development Specialists 226 3.5 2.10
2 First-Line Supervisors of Police and Detectives 88 1.4 2.13
3 Correctional Officers and Jailers 312 4.8 1.32
4 Police Patrol Officers 578 8.9 1.77
5 Security Guards 572 8.8 0.95
6 First-Line Supervisor of Construction Trades and Extraction Workers 517 8.0 1.75
7 Construction Laborers 937 14.4 1.08
8 Operating Engineers and Other Construction Equipment Operators 315 4.9 1.36
9 First-Line Supervisor of Production and Operating Workers 574 8.8 1.63
10 Heavy and Tractor-Trailer Truck Drivers 2,368 36.5 1.25
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5.2. Military Compensation and Retirement pay

Individuals have the choice to stay in the military and continue to receive military pay or leave the military

before or after retirement eligibility. Enlisted personnel are compensated based on a military pay scale,

which increases by pay-grade and years-of-service. Individuals receive additional compensation pay that

includes a housing compensation based on local civilian housing markets and a basic allowance intended

to pay for food. Individuals who leave the Army prior to retirement eligibility do not receive any pension

compensation. However, after reaching retirement eligibility, individuals can leave the military and receive

pension.

Upon retirement, a military personnel receives a proportional amount of the so-called high-3 average

retirement compensations (Hall, 2009). Letmi,t denote the base military compensation for an individual in

state x in period t. The high-3 average retirement compensations is calculated as

m̂i,t =
mi′′,t−3 +mi′,t−2 +mi,t−1

3
, (11)

where i′ and i′′ are the states in two years preceding retirement. Note that the the calculation of retirement

compensation does not violate the Markovian property because it is reasonable to assume that an individual

can be promoted with less than or equal to one year of time-in-grade, but not in two consecutive years.

Therefore, the pay scale can be backed out from the state upon retirement.

The proportion of the high-3 average compensations received by an individual upon retirement depends

on the total number of years in service. Let wt denote the proportion received by an individual with total

number of years of service t. Since military retirement pay is only earned if a Soldier serves a total of 20

years of active duty, wt = 0 for t < 20. The standard retirement format (Mattock et al., 2012), an individual

receives a base 50% plus 2.5% for each additional year served beyond 20 years. Hence wt is defined as

wt =

{
0, if t < 20,

0.5+0.025(t− 20), if t≥ 20.
(12)

5.3. Value Function

First, consider the value of remaining in the Army for one more year. The expected compensation in period

t for an individual in state x is given by

mi,t + ci,t +β
S∑

j=1

Pi,jVt+1(j), (13)

where S represents the total number of states and β denotes a personal discount factor such that β = 1
1+γ

and γ is the personal discount rate.

In case the decision is to leave the army, we can use (14) to represents an individual's future total cash

flow from that decision

wtm̂i,t

τ−η∑
k=t

βk−t + δxmi,t

T−1∑
k=t

βk−t(1+ ξk−t) (14)
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The first term in the above cash flow equation represents an individual's expected retirement pay at τ − η ,

where τ represents life expectancy and η represents an individual's age upon entering the Army (we assume

21 years). To simplify the model, we assume an individual's life expectancy to be the same; however, the

model may be refined with the use of applicable data pertaining to life expectancies by selected attribute

to better represent the military retirement time horizon. The second part of equation takes into account

individual's initial civilian sector pay plus civilian pay raises ξk−t and time T is considered the ceiling for

full retirement benefits.

Now, we are ready to construct the value functions. In the terminal period T , the only viable option is to

retire, and no civilian pay will be received. By simplifying the first term in (14), we obtain the value function

VT (i) =wT m̂i,T

1−βτ−η+1

1−β
. (15)

For t < T , the decision is whether to stay in the army. We also incorporate the possibility of becoming

an involuntary loss. For notational purposes, let IL denote the state of involuntary loss. Then qi,IL is the

probability of becoming an involuntary loss in state x. The optimality equations are given by

Vt(i) = (1− qi,IL)E

[
max

{
mi,t + ci,t +β

∑
j ̸=IL

qijVt+1(j)

(1− qi,IL)
,

wtm̂i,t

τ−η∑
k=t

βk−t + δxmi,t

T−1∑
k=t

βk−t(1+ ξk−t)

}]

+ qi,IL

(
wtm̂i,t

τ−η∑
k=t

βk−t + δxmi,t

T−1∑
k=t

βk−t(1+ ξk−t)

)
, ∀i, t < T. (16)

The right-hand side of equation (16) is comprised of two parts. The first part considers the probability

of not being an involuntary loss multiplied by the expected maximum value of staying in the military or

leaving the military. The second part considers the probability of an involuntary loss multiplied by the value

of leaving the Army. The value of of staying in the military, mi,t + ci,t + β
∑

j ̸=IL
qijVt+1(j)

(1−qi,IL)
, consists of

military compensation plus additional compensation plus the conditional value function in the next period.

The value of leaving the Army, wtm̂i,t

∑τ−η

k=t β
k−t + δxmi,t

∑T−1

k=t β
k−t(1 + ξk−t), consists of the value of

future retirement pay plus the value of future civilian pay.

5.4. Optimal Policy Index

One method of evaluating the stay-or-leave decision between individuals is to compare the expected values

of compensation for each decision at different states and time periods. The total expected value of compen-

sation will change in respect to each variable and it is worth noting the scale in which the values change.

For the following computational experiments, we use a life expectancy of 75 years. We assume that the

average age of individuals entering the Army is 22 years, the total time an individual works in the military

and civilian sector is 40 years, and the civilian pay raise per period is 2.5%.
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Applying the assumptions above to the value function, the following time parameters are used for com-

putation: τ = 75, η = 22, and T = 40. The parameters β = 0.8696 and ξ = 0.025 relate to the personal

discount factor and civilian pay raise. Probability matrices are used for q and P . Because of variations across

occupations in civilian pay, the stay-or-leave decision depends on the realization of civilian occupation.

We use a policy index to represent the propensity to leave. The optimal policy index is derived by calculat-

ing the values of leaving and staying in the military for each cross-mapped civilian occupation at each state

and time period using equation (16). We use an empirical distribution for civilian compensation parameters.

The index represents the proportion of instances that the value of leaving exceeds the value of staying given

potential comparable civilian occupations.

For example, an optimal policy index of 0.3 would indicate a 30% probability that the expected com-

pensation value of leaving is greater than the value of staying, given an empirical distribution of expected

civilian pay. A depiction of the indices for each state-time combination within the Infantry skill are shown

in Figure 10. Darker shading levels represent higher index values and a greater propensity to leave. The

shading clearly depicts the impact of retirement benefits after 20 years as well as the forced decisions at

each retention control point.

Individuals are characterized by different attributes and preferences which lead to a variance in personal

discount rates. The policy indices in Figure 10 are calculated using a constant personal discount rate of 15%.

This personal discount rate is consistent with the average rate simulated by Asch et al. (2008), which they

found to be the best fit andmost reasonable approximation of enlisted Army behavior. It is worth noting that a

personal discount rate of 15% is significantly lower than themean nominal enlisted discount rates reported by

Warner and Pleeter (2001). Moreover,Warner and Pleeter (2001) suggest that there is a significant difference

between officer and enlisted discount rates that is significantly attributable to observable demographic and

characteristics differences.

Table 6 shows how changes to the personal discount factor affect the average index values for a selection

of grade and YOS combinations. The average index is calculated over all possible time-in-grade values.

Intuitively, higher discount rates result in increased compensation values for leaving. Note that an individual

with grade E-5 and 7 years-of-service has an average index value of 0.090 when β = 0.99. Therefore, they

have strong propensity for continued service. When the personal discount factor decreases to 0.75, the index

increases to 0.373 and the propensity decreases considerably.

Figure 11 shows the change in expected value for each combination of state and years-of-service for two

different discount factors. The impact of the personal discount rate is most evident in the states associated

with lower pay grades.

6 INTEGRATING DYNAMIC PROGRAMMING RESULTS IN PREDICTIVE MODELING

The dynamic programming model in the previous section tries to rationalize the stay-or-leave decision for

military personnel by taking into account long-term payoffs from stay-or-leave decisions. There are two
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Figure 10 Shading represents the propensity to leave with darker shading and higher values indicating a greater
value for leaving.

Table 6 Average Index values for all Time-in-Grade.

Personal Discount Factors (β)
Grade YOS

0.99 0.95 0.90 0.85 0.80 0.75

E4 5 0.077 0.085 0.246 0.277 0.315 0.415
E5 7 0.090 0.090 0.191 0.273 0.282 0.373
E5 9 0.090 0.090 0.218 0.273 0.336 0.445
E6 12 0.088 0.113 0.206 0.275 0.331 0.419
E7 15 0.179 0.186 0.271 0.336 0.450 0.485
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β = 0.87β = 0.95

Figure 11 Value by State and Time Period

major differences between the model andmore commonly used classification approach. First, the model cap-

tures long-run personnel dynamics through its use of the estimated transition probabilities. Second, it does

not use demographic variables typically employed in classification approaches. Because of these difference,

we believe the result from the model can be used to supplement popular predictive modeling approaches.

In this section, we discuss how to integrate the results of the dynamic programming model with one of the

most popular binary classification method, the logistic regression.

We first discuss a logistic regressionmodel based on the same data as theMarkov chainmodel in Section 3.

The variables used in the binary logistic regression equation are described earlier in Table 1. In addition

to variables included in the original database we construct additional endogenous and exogenous variables

such as age, months since last deployment, and employment rate of change. The employment exogenous

variable is constructed from data obtained from the Bureau of Labor Statistics by calculating a twelve month

moving average of the monthly change in employment rate. Table 7 shows the Logit results. Most of the

results are aligned with tuition, including the impact of experience and grade being more influential than

marital status or number of dependents. The table only includes the racial category of Black because there

is not a significant difference in behavior betweenWhite, Hispanic and Asian/Other.

There are two approaches to improve the classification accuracy of the logistic regression model. The first

one is to incorporate the policy indices from the dynamic programming model as an additional variable in

the logit model. The second one is to use a combination of the DP policy indices and the logistic regression

classification as a classifier. That is, we use a weighted index αI + (1−α)L as a classifier, where I is the

DP policy index, L is the logit index, and α is the weight assigned to the DP policy index I .

Table 8 shows the cross-validation results of classifying the stay-or-leave decision using binary logistic

regression. The overall results provide a marginal lift in comparison to predicting a stay decision for all

individuals. Moreover, the majority of the error is a result of misclassifying the observed leave decisions.
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Table 7 Estimated Logistic Regression Coefficients

Coefficients
Variables Logit Logit w/ Index
Constant -3.025*** -4.073***

(0.053) (0.087)
MINOR_DEP -0.413*** -0.417***

(0.018) (0.018)
E5 -0.093* -

(0.031) -
E6 -2.134*** -2.003***

(0.061) (0.055)
E7 -2.386*** -2.573***

(0.113) (0.118)
E8 -1.081*** -1.392***

(0.286) (0.307)
E9 -2.120* -2.560***

(0.690) (0.683)
AFQT -0.001* -0.001

(0.001) (0.001)
REENLIST_QY -2.212*** -2.177***

(0.034) (0.034)
TIME_IN_SERVICE 0.809*** 0.769***

(0.011) (0.011)
AGE_CENTER 0.130*** 0.163***

(0.008) (0.008)
AGE_CENTER2 -0.009*** -0.011***

(0.000) (0.000)
MARRIED -0.564*** -0.556***

(0.030) (0.030)
DIVORCED -0.686*** -0.670***

(0.090) (0.091)
BLACK -0.430*** -0.440***

(0.057) (0.058)
EDUCATION_CENTER 0.079*** 0.090***

(0.017) (0.017)
EMPLOYMENT -0.005*** -0.005***

(0.001) (0.001)
MONTHS_SINCE_DEPLOY*DEPLOY 0.004*** 0.004***

(0.001) (0.001)
INDEX - 0.563***

- (0.035)
Standard errors in parentheses; ∗ p < .05, ∗ ∗ p < .01, ∗ ∗ ∗ p < .001
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The best fit logit model accurately predicts the stay decision in 89.9% of observations and classifies 58.7%

of the leave decisions correctly. This finding is significant, since the focus of incentive programs should is

directed at targeting individuals who are predicted to leave. Table 8 also shows that the additional parameter

does not provide noticeable improvement to the overall classification accuracy. The misclassification error

is not significantly improved when predicting the leave decision; however, it continues to be the primary

source of error. When performing logit with the Index parameter and a cut for the decision at 0.3, the over-

all classification percentage slightly decreases. However, the classification accuracy for the leave decision

increases to 84.5%.

Table 8 Classification Results of Stay or Leave Decisions (FY 06-09)

Method Cut Overall % Stay % Leave %
Logit 0.5 79.6% 89.9% 58.7%
Logit w/ Index 0.5 79.6% 89.8% 59.0%
Logit w/ Index 0.3 76.9% 73.1% 84.5%
Index 0.3 71.1% 99.9% 12.9%
Index 0.5 70.3% 99.9% 10.5%

Table 9 shows the forecasting accuracy for different parameter combinations using the weighted approach,

wherewe also experimentedwith different cut-off value z. The best overall accuracywith a personal discount

factor of 87% is achieved with weights of α= 0.40 for the retention index value and 1−α= 0.60 for the

logit value. The best cut line between stay and leave for the weighted index is z = 0.33. The two scenarios

shown below the top line show the accuracy levels when z and α are fixed at 0.5 respectively. A slightly

better accuracy specifically regarding the leave decision is achieved with α= 0.5 and z = 0.30.

Table 9 Classification Accuracy for Different Combinations of α and z Values

β Overall Accuracy% Stay% Leave% α z

0.87 80.8% 85.1% 72.2% 0.40 0.33
0.87 79.6% 89.9% 58.7% 0.00 0.50
0.87 80.7% 84.1% 73.9% 0.50 0.30
0.95 80.8% 85.8% 70.6% 0.40 0.26
0.95 80.7% 85.5% 71.1% 0.50 0.30

Predicting a leave decision based on a dynamic programming approach filters a portion of leave predic-

tions from the hybrid model. However, the smaller isolated set is predicted purely on expected compensation

values. Predicted leaves decisions in states and time combinations with a positive value for stay versus leave

compensation are not as likely to be influenced by monetary incentive.

The results of this model are significant beyond the integration of both modeling techniques because,

individually, we do not significantly sacrifice predictive capability using the dynamic programming model.
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In fact, we can achieve slightly better results while requiring only three factors: grade, TIG and TIS. This

eliminates the need for collection and analysis of specific information about individuals. More importantly,

it significantly reduces the potential perception of individual bias or discrimination that would exist if incen-

tives are tailored by more descriptive factors. This result is important because of the nature of policy making.

Many policies, particularly regarding incentive options, are naturally broad due to an aversion to policies

that are based on demographic characteristics. Targeting individuals based on grade and time-in-grade states,

present a framework inwhich previously unpalatable policy frameworks involving explanatory demographic

characteristic are replaced by feasible state criterion.

7 CONCLUSIONS

We represent the enlisted career network as a discrete-time homogeneous Markov chain and estimate its

transition probabilities using three years of personnel data from the US Department of Defense. The model

allows us to answer a wide variety of questions related to personnel behavior. Understanding the progression

of individuals throughout a career timeline can shape policies that influence the composition of the personnel

inventory such as promotion criteria, retention control points, and forced reduction measures. The estimated

parameters for the model are used to construct a stochastic dynamic programming model to understand

individual stay-or-leave decisions.

The stochastic dynamic programming model provides an alternative to classical classification approaches

to evaluating the stay-or-leave decisions. This approach can predict retention behavior more accurately than

some existing approaches, such as logistic regression, which omit expected future compensation. Another

advantage is that the dynamic programming model does not use personal attributes, and therefore can avoid

perceived discriminating in personnel actions. Future research can build on our work to optimize resource

allocations and tailor retention incentives.

Manipulations of the fundamental matrix and data results from the model are validated with prac-

titioners and historical data. Fundamental matrix results are cross-validated with test data from the

same time periods and continuation rates are consistent with an even broader time-frame. However,

this research can be strengthened in the future with additional validation against more recent data

sets. A viable study of behavioral changes may support the use of this type of analysis in favor of

longitudinal cohort data.

Given a budget constraint, and a set of skill requirements by pay grade, it is possible to determine an

optimal retention policy that initially targets individuals with grade, time-in-grade and time-in-service

combinations most likely to be influenced by financial incentives. Such an optimization method would

avoid offering incentives to those who are likely to leave due to personal attributes despite a higher

expected value of staying. Conversely, by removing the budget constraint, it is possible to determine

a minimum cost required to achieve optimal retention goals. A case study of optimal incentives could

provide an actionable extension to the research presented in this paper to inform decision-making.
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Appendix A: Descriptive Statistics of Data

Table 10 Frequency percentiles of ordinal data
Marital Status Percent Race Percent Grade Percent
Married 49.4% White 73.7% SL1 48.8%
Single 47.7% Hispanic 12.7% E-5 25.8%
Divorced 2.9% Black 7.2% E-6 19.0%

Asian/Other 6.3% E-7 4.8%
E-8 1.3%
E-9 0.3%

Prior Reenlist Percent Transaction Percent Deployed Percent
0 58.6% ETS 28.9% Yes 88.2%
1 19.4% Reenlist 66.9% No 11.8%
2 11.4% Retire 4.3%
3 10.6%
N = 43,242; Career Management Field = 11 (Infantryman)

Table 11 Descriptive Statistics of scaled data
Variable Minimum Maximum Mean Std. Dev.
Age 18 58 26.04 5.454
Time-in-Service (Years) 0.2 30 5.67 4.43
Time-in-Grade (Months) 1 250 20.32 19.22
Months Since Deployment 0 228 12.07 16.26
AFQT 0 99 57.31 20.16
Education Minor Dependents 0 10 0.73 1.097
N = 43,242; Career Management Field = 11 (Infantryman)

Appendix B: Approximation Error of the Fundamental Matrix N

The definition (5) of fundamental matrix assumes an infinite number of transitions. This definition gives a

compact representation ofN usingQ. The career path of an enlisted personnel has a finite timeline, typically

30 years. Therefore, we expect that computations based on the fundamental matrix has certain level of error.

For this reason, we would like to investigate the possible error from using an infinite summation in (5). To

that end, we compare the fundamental matrix with a finite summation of the sequenceNt =
∑30

k=0Q
k. The

approximation error of using N instead of N30 can be evaluated using the absolute and relative errors:

||N −N30||p,
||N −N30||p

||N30||p
× 100%.

Here, || · ||p represents matrix norm for given constant p.
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Table 12 presents the absolute and relative errors for three different matrix norms with p= 1, p= 2, and

p=∞. The table shows that the approximation error is quite small, with the largest relative error less than

3%.

Table 12 Absolute and Relative Errors of
using N to approximate N30

Norm Absolute error Relative error
1-Norm 0.2867 2.64%
2-Norm 0.1839 2.07%
∞-Norm 0.2292 2.22%

Appendix C: Glossary of Notations for Section 5

mx,t: Military base pay in state x and period t

cx,t: Additional compensation pay in state x and period t

m̂x,t: High-3 average retirement pay in state x and period t

qx,y: Probability of becoming an involuntary loss in state x

wt: Proportional amount of m̂x,t expected to receive in retirement

δi: Multiplier of final military pay to calculate expected civilian pay

T : Length of military and civilian career time horizon

β: Personal discount factor

τ : Individual life expectancy

η: Age upon entering military

ξ: Expected civilian pay raises
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