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We study the alliance formation strategy among suppliers in a one downstream firm-n upstream suppliers

framework. Each supplier faces an exogenous random shock that may result in an order default. Each of

them also has access to a recourse fund that can mitigate this risk. The suppliers can share the fund resources

within an alliance, but need to equitably allocate profits of the alliance among the partners. In this context,

suppliers need to decide whether to join larger alliances that have better chances of order fulfillment or smaller

ones that may grant them higher profit allocations. We first analytically characterize the exact coalition-proof

Nash-stable coalition structures that would arise for symmetric complementary or substitutable suppliers.

Our analysis reveals that it is the appeal of default risk mitigation, rather than competition-reduction, that

motivates cooperation. In general, a more risky and/or less fragmented supply base favors larger alliances,

whereas substitutable suppliers and customer demands with lower pass-through rates result in smaller ones.

We then characterize the stable coalition structures for an asymmetric supplier base. We establish that

grand coalition is more stable when the supplier base is more homogenous in terms of their risk levels,

rather than divided among few highly risky suppliers and other low-risk ones. Going one step further, our

investigation of endogenous recourse fund levels for the suppliers demonstrates how financing costs affect

suppliers investment in risk-reducing resources, and consequently their coalition formation strategy. Lastly,

we discuss model generalizations and show that, in general, our insights are quite robust.
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1. Introduction

Strategic alliances, whereby independent but cooperating organizations pool specific resources and

skills in order to achieve common and individual goals, have emerged as a popular strategy in the

business world (Varadarajan and Cunningham 1995). While such arrangements can be between

horizontal and/or vertical partners, we focus on horizontal alliances, which we will also term as
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“coalitions” interchangeably throughout the paper. Horizontal alliances are observed between com-

plementary firms as well as between competitors selling substitutable products. Examples of the

former include the ones between Caterpillar and Mitsubishi in the earthmoving equipment sector,

and among component suppliers in automobile and electronics sectors (Nagarajan and Sošić 2009).

On the other hand, substitutable-product coalitions include Renault and Nissan in the automobile

industry (Yoshino and Fagan 2003), Takeda and Hoechst in the pharmaceutical sector (Garella

and Peitz 2007), and collaborative organizations in marine transportation (Girotra and Netessine

2014) and agricultural sectors (Oxfam International 2010).

There is considerable amount of literature, especially in the strategy and organization area,

analyzing alliances from multiple perspectives. They deal with issues like alliances’ governance

structures (Gulati and Singh 2008) as well as effects of alliances on firm performance (Singh and

Mitchell 2005), innovation rate (Stuart 2000), knowledge transfer (Mowery et al. 1996), market

access (Varadarajan and Cunningham 1995) and bargaining power (Hamel 1991). But, extant

practitioner/academic literature suggests that an important reason behind alliance formation might

be to deal with external business risks (e.g., Girotra and Netessine 2014, Oxfam International

2010). This risk-mitigating role is particularly relevant for supply chains given the exogenous perils

they face from demand and/or supply side. Indeed, a number of operations management (OM)

papers have studied coalition formation in the presence of demand-side risk (refer to §2 for details).

However, longer and more decentralized value chains are now increasingly exposing supply-side

risks. Such risks put suppliers’ order fullfillment ability in jeopardy and range from relatively minor

ones (e.g., due to minor maintenance or inventory problems) to really catastrophic ones like frost

wiping out most of California’s citrus crops (Rimal and Schmitz 1999), the recent earthquake

and tsunami disrupting supply from Japan (NYTimes 2011), and the default of more than 10,000

factories in China during the financial crisis of 2008 (USAToday 2008) (refer to Lynch 2011 for

more examples). Different strategies have been proposed to deal with supply risks including diver-

sification (Babich et al. 2007), subsidies (Wang et al. 2010, Babich 2010, Wadecki et al. 2012),

guarantees (Gümüs et al. 2012), and contracting (Swinney and Netessine 2009, Yang et al. 2009).

A number of firms, in industries as diverse as marine transportation and agriculture, have also

started using “alliances” to deal with supply risks. For instance, Tankers International (TI) has

developed a commercial shipping alliance whereby they charter a pool of VLCCs (Very Large Crude

Carriers) from individual owners and use it to deliver crude oil to refineries. Such pools of (substi-

tutable) tankers help to deal with order default risks caused by weather problems, refinery closings,

maintenance and port issues - all common problems in commercial maritime transportation (Giro-

tra and Netessine 2014). TI acts as a single entity that makes the aggregate capacity available to

customers, collects earnings from transportation activities and distributes them among individual
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owners under a pre-arranged allocation system (Packard 1989, Haralambides 1996). In the agri-

culture industry, producers selling substitutable and/or complementary products to retailers also

form alliances, e.g., Farmer Producer Organizations (FPOs) in India. One of the main rationale

for this is to share supply chain risk-management funds among partners to deal with fulfillment

risks arising from factors like bad weather, transport losses and difficulty in accessing capital, and

then to properly share the gains (Oxfam International 2010, Government of India 2013).

Although the above implies that alliances could be an effective measure in dealing with the risk

of defaulting on a supply contract, firms are aware that such partnerships require equitable sharing

of risks and benefits, and consequently are not easy to sustain (see Oxfam International 2010,

Haralambides 1996). Interestingly, analytical investigation as to what types of stable coalitions (so

that there is no incentive for partners to profitably deviate) will develop in the presence of such

risk is sparse in the academic literature. This paper attempts to address this gap via a cooperative

model framework. In particular, the model will capture three salient features of the above TI and

FPO examples. First, exogenous events may result in order default risks on the part of the suppliers.

Second, risk-mitigating resources can be pooled by suppliers to overcome such disruptions. Third,

cohesive entities formed purely by self-incentivized individuals (i.e., supplier alliances) can make

coordinated decisions and distribute earnings among their members based on certain allocation

scheme.

We consider a bi-level supply chain model framework composed of n upstream suppliers and

one downstream firm (henceforth referred to by masculine and feminine pronouns, respectively).

The downstream firm faces a price-sensitive, deterministic demand that she needs to satisfy by

procuring the required components - complements or substitutes - from the suppliers. On the other

hand, there is an exogenous random shock faced by each upstream supplier that exposes him to

the risk of complete order default. However, he also has access to a fund reserved by him ex-ante

for risk-mitigation. Ex-post, this fund can be used as a recourse to deal with the shock and supply

the entire order, as long as the value of the shock is lower than the reserve amount (otherwise, he

still defaults). It is costly for the supplier to operate the reserve fund, and the fund is generic and

liquid enough (e.g, cash) to be shared with other suppliers. The reserve amount and default risk are

inversely related - the higher is the amount accessible to a supplier, the lower is his effective default

risk, although the risk-mitigating benefit shows diminishing marginal returns. In this paper, we will

use the fund amount and default risk interchangeably, keeping in mind their inverse relationship.

The suppliers first decide on their cooperative alliance structures by determining whether to join

an alliance, and, if so, with how many other partners. Since the reserve funds are shareable, the

alliance partners can pool them. The relative values of the total shock facing the supplier alliance

and its total reserve amount then determines whether it will fully default or deliver the whole order
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(like in the individual supplier case above). Each alliance then announces its supply limit for the

downstream firm and competes horizontally via wholesale prices. Subsequently, the downstream

firm decides on the order quantity for each alliance and on the retail price. Finally, default risks

and consequent profits (if any) are realized for the alliances. Each alliance then divides its profit

among the partners following a pre-determined allocation rule that is proportional to the share of

each partner in the pooled fund. We use the above framework to address the following.

• What is the equilibrium stable alliance that would arise under the risk of order default?

• What factors incentivize the suppliers to opt for larger (or smaller) alliances?

• How robust are these results with respect to model assumptions? For example:

— What if the suppliers need to decide how much to ex-ante invest in the reserve fund?

— What if the profit allocation is not proportional to the partners’ shares in the pooled fund?

We first focus on the case of suppliers who are symmetric in terms of their risk (i.e., fund) levels

and analytically characterize the number of stable alliances and their sizes through coalition-proof

Nash equilibrium technique. While making partnership decisions, the suppliers need to trade-off

the benefits of joining larger alliances that result in lower probability of order default against

the benefits of greater profit allocation in smaller alliances. Alliance literature in supply chain

management area until now focused primarily on the second factor and hence suppliers usually end

up forming small coalitions (see Yin 2010 for discussion). In contrast, by incorporating supply-side

risks and possible order default, we are able to identify a diverse set of stable coalition structures,

both large and small, depending on the business environment.

Specifically, we identify a novel risk-adjusted stability factor, which encapsulates the character-

istics of both the supply base and customer demand, to determine the stable alliances. Analysis

of this factor shows that, in general, larger alliances (including a grand coalition of all n suppli-

ers) are more likely to be formed when: i) the supplier base is more risky and/or relatively small,

ii) suppliers are complementary, and iii) retail price is more sensitive to wholesale prices (higher

pass through rates). On the other hand, antithetical business conditions (e.g., less risky suppli-

ers or lower pass through rate) result in smaller alliances and might even incentivize suppliers to

operate alone. Intuitively, one would expect that suppliers would prefer larger alliances since this

reduces the competition within the supply base. However, this argument does not take into account

the inherent difficulty in keeping larger alliances stable. Interestingly, our results show that it is

risk-reduction through fund sharing that serves as the glue holding alliances together, rather than

competition reduction through collaborative decision-making.

Subsequently, we generalize the above model to account for an asymmetric supplier base consist-

ing of certain more risky suppliers and some less risky ones, and once again analytically characterize

the sizes of stable coalitions. This characterization requires a modification of the stability factor
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to account for the asymmetry. Our previous insights still remain valid; in addition, we show that

a more homogenous (resp., heterogenous) supplier base results in larger (resp., smaller) alliances.

Lastly, we test the robustness of the above qualitative insights through multiple generalizations

of our modeling framework. First, we make the decision to invest in reserve fund to be endogenous,

i.e., suppliers decide on their coalition partners as well as how much they want to invest in risk-

reducing, but costly, reserves. If investment is quite costly, suppliers would like to take advantage of

risk reduction through fund sharing by forming large alliances, whereas if the investment is cheap,

they would like to go alone in order to have a higher profit allocation. The other two generalizations

address: i) a profit allocation mechanism that is not proportional to shares in the pooled fund, and

ii) a non-trivial default premium for the downstream firm in case of an order default. The main

insight of the first generalization is that larger alliances are sustained for relatively fair allocations.

Regarding the second generalization, all our previous insights hold as long as the premium is not

too high. As one would expect, a higher default premium increases the sizes of the coalitions.

As regards the rest of the paper, §2 discusses the related literature, while §3 presents our basic

modeling framework with exogenous reserve funds. The operational decisions are analyzed in §4,

and §5 deals with alliance formation decisions for both symmetric and asymmetric supplier bases.

§6 studies the three model generalizations. The concluding discussion is provided in §7.

2. Literature Review

There are two streams of literature most directly related to our work: research dealing with coalition

formation but where supply side risk (or resource availability to reduce such risk) is not considered,

and research studying measures to counteract supply default risk, but where suppliers only compete

with each other (i.e., without any consideration for cooperation).

Our modeling framework of multiple-suppliers-one-downstream-firm channel has a long history

in operations literature. Papers in this area traditionally had a competitive focus, e.g., Wang and

Gerchak (2003), Jiang and Wang (2010) for complementary suppliers, Bernstein and Federgruen

(2005), Yang et al. (2012) for substitutable suppliers, and Netessine and Zhang (2005) for both types

of suppliers, to name a few. In these papers, suppliers make individual decisions that maximize their

own profits taking into account the responses of competing firms. The possibility for suppliers to

communicate and jointly set their prices and/or quantities, capacities and such, is not considered.

In recent years, a line of research studying the coalition structures that could arise among

collaborating suppliers has emerged. For example, Nagarajan and Sošić (2007) investigate the

stability of coalitions among suppliers selling substitutable products in a dynamic setting. Suppliers

are assumed to be farsighted and take into account possible future defections when making any

immediate decision. On the other hand, Nagarajan and Bassok (2008) study coalition stability
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among complementary suppliers when they can negotiate with the downstream assembler about

profit allocations. They find that grand coalition (resp., no coalition) will emerge if the bargaining

power of the assembler is weak (resp., strong). Also in the context of assembly systems, Granot and

Yin (2008) find that coalitions are more likely to be formed in a pull system than a push one, and in

the latter case whether the suppliers will form grand coalition or act independently depends on their

perspective about cooperation (farsighted or myopic). Nagarajan and Sošić (2009) consider three

modes of competition among complementary suppliers, and analyze stable coalitions as a function

of power structure, demand structure, and the number of suppliers. Under a similar framework,

Sošić (2011) studies the impact of demand uncertainty on the alliance structures. Lastly, for a

quite general market condition, Yin (2010) explicitly characterizes stable coalition structures in

assembly systems, and their dependence on demand conditions.

Note that all of the above papers deal only with demand-side risks. In general, the incentive for

coalition formation in this literature has been attributed to the channel/market structure (Granot

and Yin 2008, Nagarajan and Sošić 2009, Yin 2010), bargaining power (Nagarajan and Bassok

2008), the cooperative perspective of the players (Nagarajan and Sošić 2007, Granot and Yin 2008,

Nagarajan and Sošić 2009) and the nature/extent of demand uncertainty (Yin 2010, Sošić 2011).

We follow this literature by also investigating how the stability of coalitions among suppliers is

affected by various business conditions, but complement it by showing that the possibility of order

default risk itself can also be a significant incentive behind cooperation.

As regards the second stream, there is a vast literature related to exogenous supply risks.

Although our paper deals with both minor and major supply shocks, it particularly emphasizes

order default/disruption risk because of which a buyer may not receive anything from her suppliers

(refer to Kleindorfer and Saad 2013 and Sodhi et al. 2011 for reviews about supply risk in general).

Previous studies have taken a wide angle regarding this issue. Analyzing from the buyer’s perspec-

tive, Tomlin (2006) considers several mitigation measures and contingency tools to hedge against a

variety of disruptions. Babich et al. (2007) and Chopra et al. (2007) investigate the impact of risk

correlation and the type of risk (recurring or disruption) facing the supplier community on optimal

sourcing diversification decisions, respectively. Swinney and Netessine (2009) analyze the value of

long-term vs. short-term contracts in the presence of a default risk, and Yang et al. (2009) derives

the optimal contract when suppliers hold private information about their reliability. Chaturvedi

and Mart́ınez-de Albéniz (2011) extend Yang et al. (2009) by also including supplier’s cost as pri-

vate information. Lastly, Saghafian and Van Oyen (2012) show the value of having a flexible backup

supplier in the presence of disruption risk and discuss capacity reservation issues in that context.

Looking from the suppliers’ perspective, Gümüs et al. (2012) study the impact of guarantees on

risk mitigation and the ability of suppliers to signal their true risk levels. Wei et al. (2013) discuss
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the implications of default risk coming from uncertain market prices or valuations, when the buyer

can use vertical subsidy as a strategic measure. There is also a vast OM literature exploring the

impact of yield risk on operational decisions. Among the recent ones, Tomlin (2009), Kazaz and

Webster (2011) and Gurnani et al. (2012) investigate the effects of learning, yield-dependent cost

structure, and information asymmetry on operational/marketing decisions, respectively. In general,

the papers in this research stream have had either a centralized or a competitive focus. To the

best of our knowledge, the current paper is among the first that considers supply default risk in a

cooperative context, and is able to establish its role in suppliers’ coalition formation decisions.

Note that, although our focus is on horizontal collaboration, there is a rich stream of literature

dealing with vertical collaboration (refer to Paulraj et al. 2008, Kim and Netessine 2013). There

are also two other growing streams that are in spirit related to our work: i) Empirical analysis

of the causes of horizontal alliance formation (e.g., Li and Netessine 2011), and ii) horizontal

mergers in supply chains (e.g., Cho 2014). However, these streams differ from this paper in terms

of methodology as well as model setting.

3. Model Framework

Consider a supply chain with a single downstream firm procuring components from n upstream

suppliers and selling a final product to end consumers. Let N = {1,2, . . . , n} denote the set of

n suppliers. In our setting, the components can either be complements or substitutes. If they

are complements, the final product is an assembly consisting of one component each from the n

suppliers; if they are substitutes, the final product consists of only one component available from

any of the n suppliers. The downstream firm - an assembler or a buyer depending on the component

type - acquires the components and then (costlessly) assembles/produces the end product to satisfy

customer demand (refer to Figure 1). Below, we describe the salient features of the stakeholders

in our supply chain. A glossary of notations is provided in Table A1 of the Appendix.

Downstream firm: We model the end product demand facing the downstream firm as a price-

sensitive deterministic function D(p), where p is the retail price set by the firm. We assume that

D(p) is positive and decreasing in p, and its price elasticity satisfies the following form:

η(p) =− D
′
(p)

D(p)/p
=

p

α+βp
, (1)

where α ≥ 0 and β ≤ 1 (as in Song et al. 2007). Note that the class of demand functions that

satisfy (1) is quite general and subsumes most of the specific demand forms assumed in the related

literature, such as iso-elastic (Wang 2006), linear (Nagarajan and Sošić 2007, Nagarajan and Sošić

2009) as well as linear-power and exponential (Yin 2010); see Table A2 in the Appendix for details.
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Figure 1 Channel Structures with Complementary and Substitutable Suppliers

Upstream suppliers: The n upstream suppliers in our model decide whether to operate inde-

pendently or join a coalition. Each coalition acts as one entity in the context of our interest where

the partners coordinate their pricing and capacity decisions. This aligns with the description of

shipping pools in Haralambides (1996), and that of certain FPOs with the farmers as the share-

holders (Government of India 2013). So, all upstream entities, independent suppliers or coalitions,

set a single wholesale price and a single capacity limit that is available for the buyer. The buyer

then decides on the order quantities from each entity (and the retail price, as described above).

Each of the n suppliers is also subject to an exogenous environmental shock. These shocks open

them up to the risk of entirely defaulting on the buyer’s order. For example, the buyer might

specify in the contract that she requires the whole order by a certain date, and if it is not available

by then, she will procure it from an outside source, and not accept supply of a partial order.

Some of the shocks, e.g., equipment problem, might be small in impact, whereas some others, e.g.,

natural disasters and financial crisis, might be catastrophic. The suppliers then require funds to

recover to their normal state from the shock. We use the random variable ξi to denote the shock,

or, equivalently, the (minimum) amount of funds needed by supplier i to recover from the shock

and fully satisfy the buyer’s contract (Lynch 2011, SCDigest 2012). We assume that {ξi}n1 are i.i.d.

with c.d.f. G(·) with E[ξi] = µ.

Furthermore, suppose that each supplier has ex-ante reserved a risk-management fund Fi that

he can use as a recourse for the purpose of recovery after a shock (SCDigest 2012). As long as

the reserve amount is more than the funds needed to recover, the supplier can fulfill the entire

order (“survive”) and gain the associated profits. Otherwise, he “defaults”, earning zero profits as

well as incuring the monetary loss from the shock. The supplier also incurs costs to maintain the

fund (cf (Fi)), irrespective of the magnitude of the shock. The above principle holds true even for a

coalition after accounting for the pooling of reserve funds and shocks for the partners (see below).

We model the net cash flow of a supply entity, a single supplier or a coalition, as follows:
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Net cash flow for a supply entity =

Cost of ex-ante recourse investment︷ ︸︸ ︷
−Operating Expenses of Reserve Fund

+ (2){
− Shock + Profits if Shock≤Reserve Fund (survive state)

− Shock if Shock>Reserve Fund (default state)
︸ ︷︷ ︸

Ex-post net earnings

The above cash flow model follows Swinney and Netessine (2009). Similar to their paper, we assume

that (existing capital + loans − interest payment − fixed operating expenses=0) for activities

beyond our context, and only the damage ξi (loss on existing capital), the reserve fund operating

cost cf (Fi) (operating expenses) and survival-state profit (revenue minus production expenses) are

considered in cash flows. Unlike Swinney and Netessine (2009), however, suppliers or coalitions in

our paper are all self-sustained, i.e., no external creditor or lender is involved in financing. Thus a

positive/negative cash flow implies an increase/reduction in existing equity, respectively. Next we

describe the expected cash flows for an individual supplier and that of a coalition in more details.

Individual supplier: Following (2), if an individual supplier’s reserve fund is more than the

shock (i.e., ξi <Fi), he delivers the full order as per contract and receives the profit associated with

the order, πi. Otherwise, if ξi ≥ Fi, then he defaults, i.e., his profit from the order is zero. Thus,

the expected net cash flow for supplier i = −cf (Fi)−E[ξi] +G(Fi)πi.

Coalitions: Suppose a set of suppliers S ⊆N forms a coalition. Recall that we focus on risks

that would inhibit a coalition from fulfilling even a partial order. Since the coalition acts as one

entity, the reserve funds of the partners are pooled (FS =
∑

i∈S Fi) and the coalition faces the total

exogenous shock of its partners (ξS =
∑

i∈S ξi). Denote by |S| the number of suppliers in S, and

by G|S|(·) the c.d.f. of
∑

i∈S ξi. If the coalition can mitigate the damage from the total shock by

using the pooled fund, i.e., if ξS ≤ FS, then it survives and receives the payment for the order from

the downstream firm. This happens with probability G|S|(FS). Otherwise, if ξS >FS, the coalition

defaults, which takes place with probability Ḡ|S|(FS) = 1−G|S|(FS), and receives no payment. In

other words, in order for a coalition to fail, the amount of shock that they collectively face needs

to be more than their total reserve funds, irrespective of whether individual shocks are more or

less than individual reserve funds. Following the same logic as before, expected net cash flow for

the coalition = −∑i∈S cf (Fi)− ξS +G|S|(FS)πS.

Since suppliers’ contribution to the pooled fund Fi’s directly affect the coalition’s ability to

deliver the order (G|S|(
∑

i∈S Fi)), we allocate the expected profit for the coalition among the

partners proportional to these contributions. This mechanism has real-life support in the weighing
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system used for shipping pools (Haralambides 19961). We also discuss more general profit allocation

rules in §6. Note that, although pooled funds can be transferred among partners for recovery

purpose providing increased accessibility to resources, each supplier retains the financial ownership

of his reserve fund throughout the process; so, the reserve fund amount itself does not need to be

included in the cash flows for individual suppliers. However, the operating cost of maintaining the

reserve fund, cf (Fi), is a sunk cost borne by individual suppliers and needs to be accounted for. In

summary, given a structure of m coalitions {S1, S2, ..., Sm} among n suppliers, where
⋃m

k=1Sk =N

and Sk ∩Sk′ = ∅ for any 1≤ k < k′ ≤m,

Expected net cash flow for supplier i in coalition k=−Operating expenses cf (Fi)

−Expected shock E[ξi] +
Fi∑
j∈Sk Fj

× (Expected profit for coalition k). (3)

Each supplier will independently make his expected-cash-flow-maximizing decision about whether

to join a coalition, and if so with how many partners, based on the above expression.

There are two other elements of the model - a technical assumption about the survival prob-

ability of an entity and the sequence of game among the stakeholders - that we discuss below.

Assumption: Gl(F ) represents the survival probability for a coalition of l suppliers if their total

risk-management fund is F , where l is a positive integer. Thus, for individual suppliers, we have

G1(·) = G(·). Furthermore, denote by Vl(F ) = Gl(F )/F the survival probability per unit of fund

for a coalition of l suppliers with reserve fund F . We restrict our attention to funds that are at

least sufficient to cover the expected loss. That is, for each supplier i, Fi ≥E[ξi] = µ. For technical

tractability, we also use the following assumption for values of F and l of our interest (refer to the

Appendix for details) throughout the paper:

Assumption 1.

(a) Vl(lF ) decreases in F for l= 1, and decreases in l for any given F .

(b) Gl(lF )/G1(F ) is unimodal in F for any given l.

As shown in the Appendix, Assumption 1 holds for several commonly used distributions, including

exponential, Erlang and normal. Specifically, Assumption 1(a) posits how the reserve fund level F

and the size of the coalition l affect the survival probability. F has a diminishing rate of impact

on the survival probability of an individual supplier, and, for symmetric suppliers each holding

F , the impact of the fund level on the survival probability of a coalition also diminishes in the

1 In tanker pools like TI of §1, the net revenue of the total pool is allocated among the partner tankers proportional
to their shares of the effective cargo carrying capacity (which takes into account factors like the base capacity, hiring
period, tankers’ efficiency and suitability for the pool’s main trades and operations and fuel consumption) in the total
pool’s carrying capacity. For the exact formula used for allocation of net revenues in the case of Tanker pools, please
refer to Haralambides (1996).
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scale of the coalition (i.e., the survival probability per unit fund is higher for a smaller coalition).

For symmetric suppliers, Assumption 1(b) concerns the benefit in terms of survival probability of

joining a l-supplier coalition with l > 1 versus that of operating alone. It requires that such benefit

increases in the average fund level F on [µ,F0] for some F0 ≥ µ, and decreases thereafter. Therefore,

the relative benefit of joining an alliance increases when the reserve fund level is relatively low, but

does not further increase beyond a threshold reserve fund level.

Game sequence: The sequence of the events in our framework is as follows (refer to Figure 2).

Stage 1: n upstream suppliers strategically form m coalitions S = {S1, S2, ..., Sm}, by playing a

cooperative game among themselves.

Stage 2: Each coalition Sk commits to its supply limitQSk , which caps the amount it will produce

for the downstream firm. For exposition purpose, we assume zero commitment cost, which, as

shown in the Appendix, is without loss of generality. Each coalition then determines the wholesale

price wSk it will charge to the downstream firm. This stage involves competitive decision-making.

Stage 3: The downstream firm maximizes her profit by determining the retail price p for the

final product and the order quantities {qSk}, qSk ≤QSk , from each coalition Sk.

Stage 4: Exogenous supply shock resolves. If a coalition Sk survives, the entire order from the

downstream firm is delivered. Each unit produced by coalition Sk incurs a marginal cost cSk , where

cSk is equal to |Sk|c and c for complementary and substitutable cases, respectively. The resulting

profit is shared among the coalition members based on their respective contributions to the pooled

fund. Otherwise, in case of an order default, the coalition receives no payment, and the downstream

firm has to utilize an emergency source for the shortfall that charges the firm a premium δSk on

top of the coalition’s wholesale price wSk . When the components are complementary, there is a

unit premium δ ≥ 0 for each component; so, δSk = |Sk|δ. If they are substitutes, there is only one

component from the coalition; so, δSk = δ. Similar premium emergency sourcing option has been

used before in the related literature, e.g., Dong and Tomlin (2012). Subsequently, the downstream

firm sells the final product to the end customers at price p and collects her revenue.

4. Operational Decisions under a Given Coalition Structure

In this section, using backward induction, we characterize the equilibrium operational decisions

of each coalition and the downstream firm (i.e., stages 2 and 3 of the game) for a given coalition

structure S = {S1, ..., Sm}, where a coalition of size 1 represents an individual supplier.

We start with optimal ordering and pricing decisions of the downstream firm (i.e., stage 3). To

make her ordering and pricing decisions, the downstream firm will take into account the possibility

that each coalition Sk might default with certain probability, in which case she would have to pay

a premium δSk to ensure supply as discussed in the last section. This allows us to determine the
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Stage&1& Stage&2& Stage&3&

Upstream)coopera've)
decision)making)

Upstream)compe''ve)
decision)making)

Downstream)
decision)making)

Stage&4&
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• Power-Fractional Rule �i,S =
F u

i�
j⇥S F u

j

. Each member in the coalition is assigned with a weight

equal to the power of his original risk endowment. The allocation to each member is no longer

equal - as in the model without default risk - but increasing with her contribution of the total risk

endowment of the coalition. In particular, when u = 0 the group profit is divided evenly among all

suppliers in the same coalition.

• Shapley Value. Given coalition structure S = {S1, S2, ..., Sm}, Shapley value allocates supplier

i⇤ Sk the amount

⇥S
i (v) =

⇥

S�Sk/{i}

(|S| � 1)!(|Sk| � |S|)!
|Sk|!

(v(S ⇧{i})� v(S)) (3)

where v(S) is the profit generated by suppliers in alliance S. In our problem, v(S) = 0 if S =

⌅; if S is nonempty and S ⇥ Sk, v(S) is the profit eared by S under coalition structure S
�
=

{S1, ..., S,Sk/S, ..., Sm}; and if S = Sk, v(S) is the profit earned by Sk under coalition structure S .

3.4. Stability Concepts

Having in mind his profit under all possible coalition structures, a supplier (some suppliers) may

have the incentive to deviate from the current one in achieving a better outcome for himself

(themselves). A Nash stable (NS) coalition structure S = {S1, ..., Sm} has to ensure that no single

supplier has the incentive to make a feasible deviation from S . Not surprisingly, with all the merits

such as simple to understand and verify, NS has been questioned for not allowing suppliers to

deviate as a group while they are allowed to form a group. Nevertheless, NS lays the ground for

many other static concepts.

A strong Nash stable (SNS) coalition structure, on the other hand, is immune to deviations with

arbitrary set of suppliers. Therefore the strong Nash stable coalition structures are always a subset

of the Nash stable ones. Note that SNS is quite strong a stability concept that it implies Pareto

e�ciency. It is thus very natural that for many instances, SNS turns out to be empty (e.g., Yin

(2010) in this case).

As a compromise, coalition-proof Nash stability (CPNS) lies in between NS and SNS. Unlike

NS, CPNS allows suppliers to communicate and deviate as a group. However, CPNS does not have

to sustain all potential deviations. Bernheim et al. (1987) characterize the set of self-enforcing

deviations that CPNS should be immune to.

Exogenous)Supply)
Shock)Resolves)

Downstream firm
determines
• order quantities
(qS1

, . . . , qSm
)

• retail price p

Suppliers form
coalitions

Coalitions determine
• supply limits
(QS1

, . . . , QSm
)

• wholesale prices
(wS1

, . . . , wSm
)

Profit is allocated
according to
pre-specified rules

Figure 2 Game Sequence of the Model Framework

expected wholesale price w̃Sk =wSk + Ḡ|Sk|(FSk)δSk paid by the downstream party to coalition Sk

for both complementary and substitutable cases. Based on the expected wholesale prices, the down-

stream firm then determines the expected-profit-maximizing order quantities from the coalitions

(which determine the retail price based on the inverse demand function). Specifically,

• for an assembler dealing with complementary suppliers, the same order quantity applies to all

coalitions and qS1 = qS2 = ...= qSm = q. The assembler’s expected profit Π0 is then

Π0(q) = max
0≤q≤min{QSk}

q

(
D−1(q)−

m∑

k=1

w̃Sk

)

• for a buyer dealing with substitutable suppliers, the total order to place with the suppliers is

q=
∑m

k=1 qSk . The buyer’s expected profit Π0 can be expressed as

Π0(qSk , k= 1,2, ...,m) = max
0≤qSk≤QSk , k=1,2,...,m

m∑

k=1

qSk
(
D−1(q)− w̃Sk

)

In either case, let q∗Sk(w,Q) be the optimal order quantity that solves the optimization problems.

Given (wS−k ,QS−k), coalition structure S = {S1, ..., Sm} and provided that coalition Sk survives,

the profit expressions for coalition Sk (denoted by πSk) and a supplier i within that alliance (denoted

by πi) can be written as follows:

πSk(S |wS−k ,QS−k) = max
0≤wSk ,0≤QSk

(wSk − cSk)q∗Sk(w,Q),

πi(S |wS−k ,QS−k) =
Fi
FSk

πSk(S |wS−k ,QS−k).

The equilibrium pricing and ordering decisions for the suppliers and the buyer are given in Propo-

sition 1. All the technical proofs are provided in the Appendix.

Proposition 1. (Equilibrium Operational Decisions) Given a coalition structure S =

{S1, ..., Sm}, the equilibrium decisions for stages 2-3 are as shown in Table 1.
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Complementary suppliers Substitutable suppliers

Retail Price (p∗)
mα+ C̃

(1−mβ)(1−β)
+

α

1−β
α+mc̃

(m−β)(1−β)
+

α

1−β

Order Quantity (q∗Sk =
Q∗Sk)

D(p∗) D(p∗)

(
1

m
+
m−β
m

(
c̃− ĉSk

)

α+βc̃

)

Wholesale Price (w∗Sk)
α+βC̃

1−mβ + cSk
α+βc̃

m−β + c+ c̃− ĉSk

In the above, C̃ = nc+
∑m

k=1 Ḡ|Sk|(FSk)δSk , c̃= c+
∑m

k=1 Ḡ|Sk|(FSk)δ/m, ĉSk = c+ Ḡ|Sk|(FSk)δ

and Ḡ|Sk|(FSk) = 1−G|Sk|(FSk)

Table 1 Equilibrium Operational Decisions for Stages 2 and 3

The equilibrium solution inherits a structure similar to those without supply risk (e.g., see Yin

2010 for the complementary case) with adjustments to account for the risk-reducing funds FSk

of the coalitions, i.e., their effective supply risks. Indeed, FSk significantly impacts the decisions

for both complementary and substitutable suppliers, albeit somewhat differently. For example, in

the complementary case, the equilibrium coalition production quantity q∗Sk = Q∗Sk is affected by

the effective total production cost C̃ reflecting the aggregated effect of all reserve funds, {FSk}mk=1.

Thus, higher reserve levels result in higher order quantities for every complementary coalition (C̃

and q∗Sk are inversely related). But, under the substitutable case, q∗Sk is affected via both effective

average production cost c̃ (another representation of {FSk}mk=1) and effective individual production

cost ĉSk (related to FSk only), which determine the total order quantity and the order allocation

among coalitions. In this case, although higher reserves still result in total quantity expansion,

coalition Sk’s order also depends on its own resource level compared to its competitors.

The sensitivity of the profits with respect to coalition structures is also different for upstream

and downstream firms. For complementary suppliers, as the number of coalitions m decreases (i.e.,

larger coalitions), the ex-post profit of each coalition increases, and the expected profit of the down-

stream firm (i.e., assembler) and the consumer surplus increase as well. For substitutable suppliers,

however, this might not be true. Particularly, when the default premium δ is small, while the the

ex-post profit of each coalition still increases with the formation of larger coalitions (smaller m),

both the expected profit of the downstream firm and consumer surplus may actually decrease.

In essence, while upstream suppliers are always better off with more co-operation, the same may

not be true for the downstream firm. Notably, a downstream firm that deals with complementary

suppliers would generally prefer larger coalitions (e.g, highly integrated sub-assemblies) because
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they indirectly reduce the cost of default risk for the suppliers as well as the intensity of indi-

rect competition (Jiang and Wang 2010). This enables the coalitions to sustain lower equilibrium

wholesale prices. On the other hand, for substitutable suppliers a buyer would prefer smaller coali-

tions (e.g., highly fragmented market) in order to strengthen the competition that would depress

the equilibrium wholesale prices. Obviously, lower wholesale prices result in lower retail prices

to improve consumer surplus (and vice versa). Given the optimal decisions for a given coalition

structure (Stages 2-3), we next analyze how the individual suppliers strategically decide on their

equilibrium coalition structures (Stage 1).

5. Coalition Structure and Stability

In this section, we focus on characterizing the stable equilibrium coalition structures among

upstream suppliers for the scenario where the amount invested in risk-mitigating reserve fund by

each of them is exogenously known (we discuss the endogenous case in §6.1). In this context, we

first analyze the case of symmetric fund amounts for all suppliers and then the asymmetric case.

We initiate our analysis by first discussing the stability concept used in this paper.

5.1. Coalition-Proof Nash Equilibrium (CPNE)

An often-used concept to characterize coalition stability is the Nash equilibrium (NE). A Nash

stable coalition is defined as the one in which there is no individual profitable deviation for any

party. Even though NE allows for a simple verification, it does not account for profitable deviations

as a group. As a remedy, the concept of Strong Nash Equilibrium (SNE) has been proposed, which

requires that a coalition structure is immune to deviation by any arbitrary set of suppliers. However,

this concept suffers from imposing too strong conditions on the coalitions and lacks consistency in

definition (Bernheim et al. 1987). As an alternative, this paper adopts a refined stability concept,

called coalition-proof Nash equilibrium (CPNE, refer to Bernheim et al. 1987 for details). In general,

• a CPNE must be self-enforcing and not strictly dominated by another self-enforcing strategy;

• a strategy among a group of players is self-enforcing if every subgroup plays CPNE strategy

in its component game.

Therefore, unlike NE, CPNE allows suppliers to communicate and deviate as a group. However,

CPNE does not consider all potential deviations as in SNE, but only the valid (by definition,

self-enforcing) deviations — that no proper subset of the defecting players can reach a mutually

beneficial agreement to deviate from the deviation. In this sense, CPNE is more consistent and

forward-looking than SNE. In particular, it allows for explicit characterization of all stable out-

comes. Due to these reasons, CPNE has been used in the literature for analyzing coalition formation

in a number of settings, including some involving generic risks (Bernheim and Whinston 1987;

Genicot and Ray 2003). Throughout the paper, we use “stable” to abbreviate “coalition-proof Nash

stable”, unless specified otherwise.
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5.2. Key Trade-off in Coalition Formation

For a given coalition structure S = {S1, ..., Sm}, the expected profit of supplier i in a coalitionn

alliance Sk is given by

Πi(S ) = πSk(S )G|Sk|(FSk)
Fi
FSk

, ∀i∈ Sk. (4)

When the reserve fund amount is known, based on (3), we know that supplier i should make his

decision about whether or not to join a coalition based on the above profit expression. The expres-

sion involves three terms. The first term πSk(S ) denotes the profit for coalition Sk, if it survives,

and can be derived from Proposition 1. The second term, G|Sk|(FSk), measures the survival prob-

ability of a coalition, i.e., its probability of successfully fulfilling the order. So, πSk(S )G|Sk|(FSk)

is the expected profit of coalition Sk taking into account the order default risk. Lastly, Fi/FSk

denotes the share of coalition profit allocated to supplier i.

The above profit function reveals the key trade-off between joining large or small coalitions for

supplier i. On one hand, joining a large coalition has the strategic benefit of increasing his survival

probability G|Sk|(FSk). On the other hand, a large coalition may not yield a satisfying profit share

for him, as πSk(S )Fi/FSk may decrease in |Sk|. This represents the operational dis-benefit of a large

coalition. By focussing mainly on the operational disadvantage, existing literature (e.g., Granot and

Yin 2008, Yin 2010) provides evidence that large coalitions are often not sustainable among firms

where there is no supply risk. Taking into account also the strategic benefit, our model provides

a more comprehensive account that generates new insights. The key lies in how suppliers leverage

the above two opposing forces during the course of coalition-formation decision.

In order to focus on the key trade-off, for now, we assume that the price premium δ that

the downstream firm has to pay in case of order default is minimal, i.e., δ = 0. So, our basic

framework represents a scenario where, if a supply entity fails, then there are plenty of external

options available to “match” his price. This assumption is reasonable as long as the components

are relatively commoditized. Nevertheless, we discuss the impact of δ > 0 in §6.3.

5.3. Symmetric Suppliers

Suppose that all n suppliers have the same amount of fund F for dealing with order default risk

(so they are equally risky). We first characterize the stable equilibrium coalition structure that will

develop in this case and then discuss the factors that shape the coalition formation decision.

Our first result states that possible stable coalitions should be of similar sizes. In particular,

stability disallows any two coalitions to differ by more than one supplier. Therefore, if the suppliers

form m coalitions, there is only one configuration that is possibly stable. It is the one that has

n−mbn/mc coalitions of size dn/me, and m+mbn/mc−n coalitions of size bn/mc, where bn/mc
and dn/me denote the nearest integers that are (weakly) smaller and larger than n/m, respectively.
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Proposition 2. Consider n suppliers with identical reserve fund levels. Then, if CPNE contains

m coalitions, the size of each coalition should be equal to either dn/me or bn/mc.

Example 1. Suppose there are n= 5 suppliers. Let Ik represent a set of k identical suppliers.

Then, Proposition 2 states that the possible stable coalition structures among the suppliers can

only be one of the following forms: {I5}, {I2, I3}, {I1, I2, I2}, {I1, I1, I1, I2}, or {I1, I1, I1, I1, I1}. �

To determine which one of the above structures will be stable, we need to verify the following

conditions characterized by U(m), where U(m) is the ratio of ex-post payoff for m-supplier-coalition

versus (m+ 1)-supplier-coalition (see Table A4 in the Appendix for detailed U(m) expressions).

Theorem 1. (CPNE with n identical suppliers) For n suppliers with identical reserve fund

levels F , there exists a unique CPNE with m∗ coalitions. In particular, the suppliers

(i) will form a grand coalition (m∗ = 1) if U(1)≥ V1(F )

Vn(nF )
;

(ii) will act independently (m∗ = n) if U(m)<
V1(F )

Vdn/me(dn/meF )
for any 1≤m≤ n− 1;

(iii) will form m∗ coalitions if U(m)<
V1(F )

Vdn/me(dn/meF )
for all 1≤m≤m∗ − 1, and U(m∗)≥

V1(F )

Vdn/m∗e(dn/m∗eF )
, where 1<m∗ <n.

Theorem 1 suggests an algorithm to find the number of stable coalitions among n suppliers. Specif-

ically, the number of stable coalitions among n suppliers is determined by the smallest m (where

m is between 1 and n− 1) at which U(m) exceeds
V1(F )

Vdn/me(dn/meF )
. Equivalently, we can define

for each m∈ {1,2, ..., n− 1} a Risk Adjusted Stability Factor (RASFm) as follows:

RASFm =U(m)− V1(F )

Vdn/me(dn/meF )
(5)

and then characterize the number of stable coalitions by searching for the smallest m where RASFm

becomes non-negative. This algorithm is illustrated via the following example.

Example 2. Suppose that there are n= 3 complementary suppliers, each facing i.i.d. risk ξi ∼
N(5,1), and market demand is D(p) = ap−b with b = 8. This results in, by Table A4, U(m) =

(1 +
1

7−m)7. We can then plot RASFm as function of F as shown in Figure 3.2

Clearly, for relatively low values of F (between 5.04 and 7.06), m= 1 is the smallest index that

makes RASFm non-negative. Therefore m∗ = 1 and the grand coalition {I3} is uniquely stable. As

F increases, e.g., F > 7.06 (more than 98.03% individual survival probability), RASF2 becomes the

first non-negative RASF, hence m∗ = 2 (i.e., two stable coalitions {I1, I2}). By similar argument,

2 As indicated before, the reserve fund amount F of an individual supplier directly corresponds to his survival
probability (in this case, it is Φ(F −5) for each supplier, where Φ(·) is the CDF of standard normal random variable)
and inversely to his default risk. For all our numericals we report both F and the corresponding survival probabilities.
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Figure 3 Risk adjusted stability factor (RASF) in a three-supplier system with iso-elastic demand

when F is extremely close to 5 (less than 5.04, i.e., 51.6% individual survival probability), two

coalitions will be formed and {I1, I2} is stable. Note that independent structure {I1, I1, I1} is never

stable because RASF2 is always non-negative for all values of F . �

Based on above, it is clear that the coalition formation decision depends on RASFm in (5). The

second component of RASFm is a function of the reserve fund level F (or, equivalently, risk level)

of the suppliers and the size of the supplier base n, while the type of supplier (complements or

substitutes) and the form of the demand function determine the first component U(m) of RASF.

We discuss the detailed effects of the above four factors on the incentive to form coalitions below.

Risk level of the suppliers (F ): Example 2 illustrates that when the suppliers themselves have

access to significant amount of funds to reduce their order default risks, they will prefer to form

coalitions with a small number of other suppliers (i.e., large m∗). On the other hand, if the suppliers

do not have such access, they would like to take advantage of resource-sharing by forming large

coalitions. The only exception is when the fund is quite limited (F extremely small, very close to

µ) and suppliers cannot garner much risk-reduction benefit even by pooling their funds. In that

case, the suppliers will opt for small coalitions (i.e., large m∗) to get better profit allocations.

Size of the supplier base (n): Larger coalitions are more achievable when the supplier base is

smaller (lower n), i.e., when the intensity of direct competition among substitutable suppliers or

indirect competition among complementary suppliers (Jiang and Wang 2010) is lower. This implies

that in assembly systems, low-modularization design, which would involve small number of suppliers

delivering these modules, facilitates cooperative decision making, whereas in the substitutable case,

cartels are more likely to be formed when there are less number of suppliers in the market. To

illustrate this, consider Figure 4, which is based on Example 2. When n= 3, the grand coalition is

achieved for 5.04≤ F ≤ 7.06. When the number of suppliers increases to 6 or more, however, grand

coalition is never stable. The above two effects are summarized in Proposition 3 below.
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Figure 4 Risk adjusted stability factor with index 1 (RASF1) with respect to the size of the supplier base n

Proposition 3. In general, larger coalitions are more likely to be stable

(i) as the suppliers become more risky (or, equivalently, are endowed with lower amount of

reserve fund F );

(ii) when the number of suppliers in the supply base is relatively small (small n).

As discussed before, the component type and the demand function shape coalition incentive

through their effects on U(m). In order to understand this better, for the rest of this section

we restrict our attention to the three most commonly assumed demand functions in the related

literature — iso-elastic, linear-power (linear is a special case) and exponential (refer to Table A2 in

the Appendix). Also, suppose that the pass-through rates of these functions, defined as the ratio of

retail price change to the wholesale price change (dp/dW ) (Tyagi 1999, Moorthy 2005), are greater

than 50%. Note that this assumption implies that the consumers will shoulder more of the change

in wholesale prices than the retailer does; this is natural in many industries (Besanko et al. 2005).

Structure of customer demand: Analysis of the demand functions suggests that higher pass-

through rate promotes the formation of larger coalitions. As illustrated in the Appendix, as the

pass-through rate increases, the resource requirement in order for grand coalition to be the stable

equilibrium also increases. Recall that smaller coalitions will most likely lead to higher wholesale

prices and consequently higher retail prices (Proposition 1), and the pass-through rate measures

the ratio of change in retail price over the change in wholesale price. Higher pass-through rate

then implies a more sensitive vertical structure in which inefficient upstream decisions (e.g., small

alliances, high wholesale prices) will lead to higher downstream retail prices. Thus, the jeopardy of

small alliances is amplified as the pass-through rate increases, and hence large-alliance structure
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becomes more rewarding and stable. Based on Table A2 in the Appendix we can then conclude

that iso-elastic demands with lower levels of elasticity or linear-power demands that are more

price-sensitive are more conducive to larger coalitions.

Component/supplier type: It can also be shown that U(m) for the substitutable case is smaller

than the complementary one implying that large coalitions are more achievable among complemen-

tary than substitutable suppliers. We illustrate this in the example below. This result is somewhat

intuitive — since complementary suppliers are competing indirectly (rather than direct competition

faced by substitutable ones), there is less reluctance on their part to enter into partnerships.

Example 3. Consider the same supplier set and market demand as in Example 2. For com-

plementary suppliers, UC(m) = (
8−m
7−m)7. Theorem 1 shows that the grand coalition {I3} will be

formed if 5.04≤ F ≤ 7.06; otherwise, two coalitions {I1, I2} will be formed. For substitutable sup-

pliers, US(m) = (
m+ 1

m
)2(

8− 1/m

8− 1/(m+ 1)
)7. If 5.13≤ F ≤ 6.72 (i.e., individual survival probability is

between 55.17% and 95.82%), two coalitions {I1, I2} will be formed; otherwise, independent coali-

tions {I1, I1, I1} will be formed. Note that, for any given F , substitutable suppliers yield smaller

coalitions than complementary ones. �

The above two effects are summarized in the proposition below.

Proposition 4. In general, larger coalitions are more likely to be stable

(i) for supplier bases facing end customer demands with higher pass-through rates;

(ii) among complementary than substitutable suppliers.

Risk-reduction vs competition-reduction: Until now, we have focussed on characterizing the con-

ditions under which coalitions would be formed and whether it will be a large or a small one.

A natural question that would arise is whether coalition formation is driven by suppliers’ desire

to reduce their risks or by the lure to reduce competition among themselves through coopera-

tive decision-making. Indeed, we can answer this question by characterizing the stable coalition

structures under a risk-less environment. Specifically:

Proposition 5. (CPNE in riskless environment) If the suppliers are effectively riskless

(i.e., F is sufficiently large), they will form the maximum number of possible coalitions with the

lowest possible sizes.

In our model, coalitions can provide two kinds of benefits — risk-mitigation and competition-

reduction. If the primary goal of coalition formation is competition reduction, suppliers should

do so even when they have large amount of funds available for dealing with order defaults and

are effectively riskless. But, the above proposition suggests quite the contrary. Indeed, the least

cooperative structure will arise in this case suggesting competition-reduction incentive alone does

not lead to large coalitions.
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When there are larger coalitions, the number of competing forces goes down and each coalition

as a whole is able to obtain a higher profit from the downstream firm; so, one would expect that

the suppliers would be better off with larger coalitions. However, this argument does not take into

account the stability of such configurations. In particular, for larger coalitions to be stable, the

benefit of adding one more supplier must be commensurate with the allocation that he will take

away, and this might not be the case. Since suppliers individually decide on coalition-formation

in Stage 1 to maximize their own expected profits, very often the equilibrium structure does not

reflect the optimum for the entire supply base (i.e., large coalitions). Therefore, it becomes more

difficult to keep larger alliances stable in equilibrium under a riskless environment.

Note that this result conforms with literature that studies coalition formation using different

stability concepts than us in a riskless environment. For example, Yin (2010) applies the NE

stability concept and derives a similar insight for complementary suppliers. In analyzing the CPNE

coalition structure, we are able to extend this insight to both complementary and substitutable

suppliers. Specifically, in the context of substitutable suppliers, we can show that an independent

structure is the stable equilibrium for high values of F , as long as there are more than two suppliers

in the supply base (refer to the Appendix). So, clearly, the incentive for coalition formation does

not lie in competition reduction. Rather, it is the risk of order default and the impetus to mitigate

that risk through resource sharing that holds the coalitions together.

5.4. Asymmetric Suppliers

In the previous section, we consider the case where all suppliers have identical amounts of risk-

management funds F and so are equally risky. In this section, we extend our analysis to the case

when suppliers face the same i.i.d. exogenous shocks but hold different level of reserve funds to

deal with order default risks. The survival probability therefore varies across the suppliers.

For the sake of analytical tractability, we assume that there are two possible reserve fund levels for

the suppliers. Specifically, there are nL suppliers with low level of reserve funds L and nH = n−nL
suppliers with high levels of reserve funds H(> L); i.e., there are nL high-risk and nH low-risk

suppliers. We need the following definition in characterizing stable coalition structures.

Definition 1. Supplier coalitions {S1, ..., Sm} are V-similar if V|Sk|(FSk) ≥ V|S
k
′ |+1(FS

k
′ + Fs)

∀k, k′ ∈ {1,2, ...,m} and s∈ Sk.
Intuitively, the above definition states that the difference between the survival probabilities of

any pair of coalitions Sk and Sk′ in a V -similar coalition structure S should not be very large.

Using this definition, we first identify a condition for stable coalitions that is quite similar to the

one with identical suppliers in the last section, except that there is an adjustment in the RASFm

expression of (5) to account for the asymmetry. Specifically, in this case, RASFm = U(m)− Tm,

where {Tm}n−1m=1 depends on both risk and demographic profiles of the supplier base (see below).
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Theorem 2. (CPNE among asymmetric suppliers) There exists a unique CPNE with m∗

coalitions. In particular, the suppliers

(i) will form a grand coalition (m∗ = 1) if U(1)≥ T1,

(ii) will act independently (m∗ = n) if U(m)≤ Tm ∀1≤m≤ n− 1;

(iii) will form m∗ coalitions if U(m)≤ Tm ∀1≤m≤m∗− 1, U(m∗)≥ Tm∗, and 1<m∗ <n,

where Tm = min
S
{ max
1≤k≤m,s∈Sk

{ V1(s)

V|Sk|(FSk)
} : S is a V-similar m-partition of the supply base N} and

the CPNE is the structure S that yields Tm∗.

As in the symmetric case, Theorem 2 also suggests an algorithm to find the stable coalitions by

searching for the smallest m at which U(m) exceeds Tm, or equivalently, RASFm becomes non-

negative. Unfortunately, RASFm is not straightforward to graph in the asymmetric case because

of the difficulty in graphically expressing Tm, which involves two reserve fund levels. Therefore, we

provide an example to illustrate Theorem 2.

Example 4. Consider the demand D(p) = ap−7, which yields U(m) = (
7−m
6−m)6 for comple-

mentary suppliers. Suppose that ξi ∼Exp(1/2), L= 3 (approximately 77.69% individual survival

probability), H = 9 (approximately 98.89% individual survival probability), nL = 2 and nH = 3.

Thus, FN = 33, where FN = nLL+nHH is the total fund level for the supplier base.

There is only one 1-partition of N , hence T1 =
V1(3)

V5(33)
≈ 8.54>U(1) = 2.99. Thus, grand coali-

tion is not stable. By Definition 1, the set of V -similar 2-partitions of 5 suppliers contains only

{L2H1,H2}, where LxHy denotes a set of x low-reserve suppliers and y high-reserve suppliers.

By using the expression for Tm in Theorem 2, we can find T2 ≈ 3.96 > U(2) = 3.81. Hence, two-

coalition structure is not a CPNE neither. Similarly, the set of V -similar 3-partitions contains only

{L1H1,L1H1,H1}. It can be calculated that T3 ≈ 3.16<U(3) = 5.62. Therefore, the CPNE contains

three coalitions {L1H1,L1H1,H1}. �

Based on the expression of RASFm in the asymmetric case, it is evident that the effects of

supplier type and the customer demand on the coalition sizes noted in Proposition 4 for symmetric

suppliers remain valid since these two factors affect only U(m) and they affect it in the same way

as before. In fact, even the effects of the size of the supplier base for identical suppliers also carry

over to the asymmetric case. Beyond these, the main new insight we gain from this section pertains

to the effects of two types of asymmetries (for large enough H and L) as discussed below.

Risk level asymmetry: The degree of asymmetry between risk levels in the supplier base can

be characterized by H/L. The following example illustrates how this ratio affects the coalition

structure.

Example 5. In Example 4 above, H/L= 3. Keeping the total reserve fund at the same level, i.e.,

FN = 33, we can reduce H/L by increasing L to 4.5, and decreasing H to 8, which approximately
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corresponds to 89.46% and 98.17% individual survival probabilities for L- and H-type suppliers,

respectively. The ratio H/L is now around 1.78. In that case, T1 ≈ 6.56>U(1) = 2.99, T2 ≈ 3.41 for

coalitions {L2H1,H2}, and U(2) = 3.81≥ T2. The CPNE now contains only 2 coalitions (compared

to 3 for Example 4), and the stable structure can be identified as {L2H1,H2}. �

The takeaway from the above example is that for large coalitions to be stable, the reserve fund

levels (or, equivalently, order default risks) of the supplier base cannot be too different from each

other. Indeed, we formalize the above by establishing the following for grand coalition.

Proposition 6. In general, given a demographic profile (nH/nL) and a total reserve fund

amount FN of the supplier base, a grand coalition is more likely to be sustained by suppliers with

similar reserve fund levels (i.e., H/L closer to 1).

Demographic Asymmetry: This asymmetry comes from the number of suppliers in low- and high-

funded group. Consider two sets of suppliers with the same total resource level FN and risk level

asymmetry H/L, but the demographic distribution in one set is more skewed towards low-funded

suppliers, e.g., nH/nL >n
′
H/n

′
L. The following example shows that larger alliances are more likely

to be stable in the latter one.

Example 6. Consider Example 4 again with FN = 33 and H/L = 3, but suppose now we

have three low-funded and two high-funded suppliers. Specifically, nL = 3, nH = 2, L= 11/3 and

H = 11. We can then show CPNE in this case contains two coalitions {L3,H2} compared to

{L1H1,L1H1,H1} in Example 4. �

We can again formalize the above insight in the following proposition about grand coalitions.

Proposition 7. In general, given a risk profile H/L and a total reserve fund amount FN of the

supplier base, a grand coalition is more likely to be sustained when the supply base has relatively

more suppliers with low reserve fund levels (i.e., nH/nL closer to 0).

In summary, the main conclusion of the analysis in this section is that homogeneity in terms of

risk profile and an abundance of suppliers with limited amount of funds available for risk-mitigation

in case of an order default incentivize the formation of large coalitions, and vice versa.

6. Robustness Analysis

To focus on the core issues related to supplier coalitions, we made several assumptions in our

analysis in §5. The major ones are: i) the amount of reserve fund F is an exogenously given

parameter, ii) the profit allocation among the coalition partners is proportional to their shares in

the pooled reserve fund, and iii) in case of an order default, the downstream firm can procure the

component(s) without paying a premium. In this section, we briefly discuss the implications of

relaxing the above assumptions and identify to what extent the insights of §5 are affected.



Huang et al : Strategic Supplier Alliances under Order Default Risk 23

6.1. Endogenous Reseve Fund Investment Decision

Until now we have assumed that ex-ante investments by the suppliers in their reserve funds for

risk-mitigation is exogenous. However, such investments can be expensive due to cost of capital

(e.g., marginal return of capital, loss of other investment opportunities). So, the suppliers need to

counterbalance the costs and benefits of coalition formation (see §5.2) against the costs and benefits

of this investment. Keeping this in mind, in this subsection, we address the issue of upstream

suppliers making their investment decisions in reserve funds before the coalition formation decision

in Figure 3 (say, Stage 0), thus endogenizing the risk levels of the suppliers. Suppliers make these

decisions competitively, and we characterize the resulting Nash equilibrium investment levels.

Suppose that a supplier’s cost of investing at level F is cf (F ) = vF , where v≥ 0. We prove in the

following that there is a unique level F I (symmetric equilibrium) that each supplier would invest

in. The corresponding stable CPNE coalition structure can then be identified via Theorem 1, as

mI =m∗(F I).

Proposition 8. Assume that
V1(F̂ )

Vk(F̂ + (k− 1)F )
decreases in F̂ for any given F . For n suppliers

each with investment cost rate v, there exists an F I > 0 and 1 ≤mI ≤ n such that it is a Nash

equilibrium for each supplier to ex-ante invest at level F I in their reserve funds and suppliers form

mI coalitions of similar sizes. In particular,

F I = max{F :
v

π(m∗)
≤ gd n

m∗ e(d
n

m∗
eF )

m∗

n
+Gd n

m∗ e(d
n

m∗
eF )

n−m∗
n
}, mI =m∗(F I), (6)

where m∗(·) follows Theorem 1.

Note that for technical tractability we need to enforce some assumption as stated in the propo-

sition. This assumption states that the survival probability per unit of fund when operating alone

versus joining another alliance should be high (resp. low) when the fund level is low (resp. high),

which holds for any exponential distribution.

In general, the equilibrium investment level F I increases and the number of stable coalition

mI decreases with the production and the investment costs. As the production cost increases,

the margin becomes slimmer, making the loss due to order default more significant, and hence

collaboration more attractive. The investment cost v also has a similar impact. An environment

where getting credit is costly (high v) incentivizes suppliers towards more resource pooling, yielding

lean investment levels and more cooperation in equilibrium. On the other hand, a lower cost of

capital hinders the formation of coalitions. Indeed, in the extreme case when the cost of capital

is negligible, there is no incentive for the suppliers to form a coalition. This again supports our

previous assertion that risk reduction is the primary motive for coalition formation.
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6.2. Generalization of the Profit Allocation Rule

Our results so far are based on profits being allocated among the coalition partners proportional

to their shares in the pooled coalition reserve fund. The existing cooperative game literature in

supply chain management area mostly uses allocations based on Shapley values (equal allocation in

absence of default risk; see Nagarajan and Sošić 2007 and Granot and Yin 2008). Our proportional

allocation indeed turns out to be equivalent to Shapley allocations when suppliers are symmetric.

Now consider a generalization of our allocation scheme in which the profits are shared according

to γi,Sk =
F u
i∑

j∈Sk F
u
j

for some u≥ 0. This family of allocation rules is quite general. In particular,

through such mechanisms, the profit can be allocated proportionally (u= 1, as in the main analysis),

in favor of high-reserve suppliers (when u> 1) or in favor of low-reserve suppliers (when 0<u< 1).

Even in this case, we can characterize the condition for grand coalition to be stable as shown below.

Proposition 9. (Grand coalition among asymmetric suppliers under general alloca-

tions) For a set of nL suppliers with reserve levels L and nH suppliers with reserve levels H, where

nL +nH = n, H >L and FN = nLL+nHH,

(i) grand coalition is a CPNE if and only if U(1)≥max{G1(L)

Lu
,
G1(H)

Hu
}nLL

u +nHH
u

Gn(FN)
.

(ii) grand coalition is more likely to be stable when u is closer to uf =
lnG1(L)/G1(H)

lnL/H
.

Clearly, the grand coalition characterization is similar to that for the proportional allocation

rule (Theorem 1) with adjustments to account for varying u. The most interesting new insight is

that grand coalition will most likely be induced by a “fair” allocation uf =
lnG1(L)/G1(H)

lnL/H
∈ [0,1],

where uf incorporates the degree of heterogeneity in survival probabilities as well as reserve funds

among the supply base. Moreover, even when the allocation rule is not “fair,” grand coalition can

still be stable provided that suitable values of u make allocations relatively fairer, i.e., make u close

to uf . Since the “fair” allocation uf is always smaller than 1, it implies that in order to induce

grand coalition, the allocation scheme needs to properly favour the more risky suppliers in the

supply base (i.e., the suppliers with lower levels of reserve funds).

Lastly, note that as the suppliers become more homogenous, i.e., L/H→ 1, the “fair” allocation

approaches the proportional rule used in the main analysis, i.e., uf → 1. Assuming the partners in

the shipping pool to be relatively homogenous, this suggests that the proportional profit allocation

system used in that industry (as indicated in Haralambides 1996) might indeed be appropriate

since such a system makes it more likely that a large coalition would be stable.

6.3. Positive Default Premium on Wholesale Prices

In analyzing the key trade-off of joining small versus large alliances, we assumed that in case of

an order default, the component can be procured from an alternate source in a frictionless manner
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(i.e., δ = 0). While such an assumption maybe realistic under certain scenarios, in this section we

allow δ > 0 and investigate how it may affect coalition structures. That is, the downstream firm will

take into account the possibility that each coalition might default with certain probability, in which

case she would have to pay a premium δSk to ensure supply, where δSk = |Sk|δ for complementary

components and δSk = δ for substitutable ones.

In the Appendix we show that for symmetric suppliers the alliance structure in §5.2 remains

valid as long as the premium δ is not too large. Specifically, we can use a set of refined risk adjusted

stability factors (RASFs), which now depend also on δ, to identify the stable coalition structures.

Rather than going into the details, we illustrate it with the following example.
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Figure 5 Risk adjusted stability factor among complementary suppliers with D= ap−8, n= 3, C = 1 and δ= 0.1

Example 7. Consider the same scenario as in Example 2, i.e., an assembly system with D(p) =

ap−8, C = 1, and n = 3. According to Lemma A9 in the Appendix, in general, the structure in

Theorem 1 will hold as long as δ ≤ 3.18. Suppose that δ = 0.1. Based on Figure 5, we can then

deduce if the reserve fund level F ∈ [5.03,7.28], i.e., individual surival probability is between 51.2%

and 98.87%, respectively, then grand coalition is uniquely stable. If F < 5.03 or F > 7.28, then a

two coalition structure {I1, I2} is stable. An independent structure is never stable3. �

The coalition structures in the above example with δ > 0 are quite similar to Example 2 with

δ= 0, except for the threshold reserve fund levels. Although the applicability of Theorem 1 requires

the default premium δ to be below a threshold value, our numericals have shown this condition to

be not at all restrictive. For instance, in the above example with threshold δ= 3.18, the equilibrium

3 When the default premium is above a threshold value, e.g., δ > 3.18 for Example 7, we cannot analytically guarantee
that Theorem 1 structure will still hold. However, the CPNE can still be verified numerically for small numbers
of suppliers. For Example 7, when δ = 4, grand coalition will be formed among three suppliers when F ∈ [5,8.25];
otherwise if F > 8.25, the two coalition structure {I1, I2} is uniquely stable.
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Figure 6 RASF1 for complementary suppliers with variation in (i) pass through rates, (ii) total production costs,

(iii) default premium/component cost ratios

wholesale prices are between 0.53 and 1.48. These values are significantly less than the threshold

default premium.

Also, the range of F that induces grand coalition is wider for δ > 0, implying that suppliers will

be more incentivized to join larger coalitions and therefore, smaller number of coalitions should

be observed in equilibrium for a positive default premium. Our numericals suggest this insight to

be quite robust. They also suggest that the curvature of RASF with δ > 0 is robust to problem

parameters. Figure 6 shows the change of RASF1 with respect to pass-through rate, total produc-

tion cost (C = nc) and the default premium to component cost ratio δ/c. In general, the curves

shift rightwards/upwards as these factors become more significant — indicating that stable large

alliances are more achievable when the downstream is more sensitive to upstream price changes,

when the raw material/labor is more costly, and when the default penalty is more severe. We again

wish to point out that the threshold δ for our results to be valid is not too restrictive indicating

the generality of our results. For the examples shown in Figure 6, the maximum δ goes beyond the

total production cost C = cn= 1.

Lastly, we comment that we assume a per unit premium δ in our analysis. An alternative assump-

tion is a lump sum payment, reflecting the fixed searching/expediting fees of emergency sourcing.

That is, if a coalition Sk defaults, the downstream firm can still procure at the pre-announced

wholesale price wSk , yet it costs her ∆Sk to seek new suppliers. All results in §4-§5 hold uncondi-

tionally for this alternative assumption.

7. Concluding Remarks

Forming cooperative alliances/coalitions with other firms is an important lever that an organization

may seek beyond its internal measures to deal with business risks. Such an arrangement equips

its members with better resources and opportunities, and also changes the way they operate and
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envision themselves. This phenomenon is observed in a number of industries including agriculture,

marine transportation and manufacturing. Alliances can be especially effective in dealing with

external risks that a firm might be facing. However, given the individual and collective profit

motives that an alliance must satisfy, the incentives to form them and their stability are issues

of research interest. So far, supply chain management literature has studied alliance-formation

focusing primarily on demand-side risks. However, one of the salient features of the recent business

environment has been a significant increase in the supply-side risk. The objective of this paper is to

understand what types of stable supplier alliances will develop in the presence of the risk of supply

(order) default, and how alliance formation incentives are shaped by the business environment.

In order to achieve our objective, we use a channel framework consisting of n upstream suppliers

and one downstream firm where the suppliers face the risk of completely defaulting in fulfilling

their orders and can form alliances to counteract such risk. Our framework is applicable for both

complementary and substitutable suppliers and has a number of other characteristics that distin-

guishes it from the existing literature. Specifically, each supplier faces an exogenous random shock

that creates the default risk. Each of them also incurs operating cost to maintain a fund that has

been reserved to deal with the shock, provided the fund amount is large enough. Since the funds

are generic and shareable, entering into alliances can further reduce the default risk through fund

sharing among partners, although the risk-mitigating benefit of such funds exhibits diminishing

returns. Also, the profit allocation mechanism among the partners in an alliance is proportional to

their shares in the pooled fund (equivalent to Shapley value based allocation for symmetric suppli-

ers). The above enables us to deal with an important trade-off a supplier faces while deciding on

whether to join an alliance not captured before in the literature — doing so decreases a supplier’s

default risk but also might have adverse implications in terms of his profit share.

We first focus on the scenario where all suppliers are symmetric in terms of fund (or, risk)

levels and fully characterize the stable alliances that will develop among them in equilibrium. It

turns out that the sizes and number of stable alliances depend primarily on a measure, termed

Risk Adjusted Stability Factor (RASF), that succinctly captures the business environment of the

suppliers. Further analysis of this measure reveals that larger alliances are stable when: i) the

suppliers are more risky (i.e., their fund levels are lower), ii) the supplier base is smaller, iii) the

suppliers are complements (rather than substitutes), and iv) the pass through rate of the customer

demand is higher. On the other hand, the converse business conditions result in smaller alliances.

One of our most important insights is that it is the need to reduce the risk of order default through

resource sharing, rather than to reduce competition, that encourages and provides stability to large

alliances. Consequently, if suppliers are risk-free, they tend to shy away from forming alliances and

mostly operate independently, and when they are very risky, they tend to form grand coalitions. We
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also characterize the exact composition of stable alliances that develops even when the suppliers

are asymmetric in terms of their fund levels. Most of the above insights continue to hold, except

when the supplier base is diverse in terms of their reserve fund levels or contains too many suppliers

with high amounts of reserve funds.

Traditionally, stability of grand coalitions has been important to anti-trust authorities because

of its implications for monopoly power (although many industries are exempted from such laws

under a variety of instances as exemplified in Government of Canada 2002). Our context brings

another aspect of such large alliances to light; they are less prone to order default. So, conditions

for stable large alliances result in less risky supply chains. Given the importance of reliable supply

chains in world commerce, anti-trust authorities need to keep this impact in mind while evaluating

them (especially in industries where supply risks are of concern). For example, stability of alliances

like TI and FPOs discussed in the paper has far reaching implications. Any disruption in marine

oil supply, which accounts for the majority of oil transportation, can be devastating for world

economy (The Economist 2012), while disruption in food supply in countries like India has major

food security ramifications (EIU 2012). Moreover, our analysis also suggests certain rationale as

to why we see more alliances in industries like automobile (Geneva 2005) and agriculture (Oxfam

International 2010). The former may be attributed to the complementary nature of the components

while the latter may arise from the fact that most of the members of organizations like FPOs in

India are small farmers who face significant amount of risks and have low amount of reserve funds

accessible to them.

We also consider the case where the suppliers first decide on how much they want to invest in

their costly risk-management reserve funds before their alliance formation strategy. It turns out

that if the investment cost is relatively low (e.g., in the present interest rate environment), they

will invest significantly and not form alliances so as not to share the profits. On the other hand,

if resource investment is costly, each of them will not invest much and depend on resource sharing

in large alliances to reduce their risks. Interestingly, the results of this paper are quite robust. For

example, they hold true irrespective of whether or not a default premium is to be paid in addition

to the wholesale price in case of a supply default, as long as the premium is not too high. The

primary effect of a positive default premium is that it increases the sizes of the alliances and reduces

their number. We also generalize our analysis by considering non-proportional profit allocations.

Specifically, we demonstrate what form of “fair” allocations (maybe non-proportional) can provide

stability to alliances by showing disproportionate favoritism towards risky suppliers.

While this paper tackles how order default risk would affect alliance/coalition formation and how

suppliers trade off the pros and cons of such a strategy, there are certainly many ways to extend

this line of work. A more in-depth study would call for further differentiation among the suppliers
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– more than the two levels considered in this paper, with more refined characterization of the risks

they are exposed to. Extending the analysis to more general supply chain networks and partial

order default settings would also be interesting. One could also consider other types of supply-side

risks, including random yield and fluctuating raw material costs, possibly bringing risk correlation

into the picture. Another possible avenue for future research is to focus on resources that are

product- or relation-specific, e.g., inventory or capacity, and hence can only be shared under certain

circumstances. This will possibly require separate analysis for complementary and substitutable

cases. Last but not least, this paper focuses on understanding the interplay between two driving

forces of forming alliances: supply risk mitigation and competition reduction. Factors such as

demand risk and negotiation power are left outside the scope of the study. One possibility is to

extend the model to incorporate some other potential drivers of alliance formation such as demand

risk mitigation, benefits due to better access to markets, higher bargaining power and economies of

scale. This would require significantly different modelling and analysis frameworks. However, our

conjecture is that some of these factors would result in further adjustments in RASFs developed

in this paper that in turn would affect the incentives for alliance formation. Another possibility

is to find proxies for these drivers and empirically test and evaluate their relative importances in

alliance decisions.
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Besanko, D., J.-P. Dubé, S. Gupta. 2005. Own-brand and cross-brand retail pass-through. Marketing Science

24(1) 123–137.

Chaturvedi, A., V. Mart́ınez-de Albéniz. 2011. Optimal procurement design in the presence of supply risk.

Manufacturing & Service Operations Management 13(2) 227–243.

Cho, S.-H. 2014. Horizontal mergers in multi-tier decentralized supply chains. Management Science 60(2)

356 – 379.



30 Huang et al : Strategic Supplier Alliances under Order Default Risk

Chopra, S., G. Reinhardt, U. Mohan. 2007. The importance of decoupling recurrent and disruption risks in

a supply chain. Naval Research Logistics 54(5) 544–555.

EIU. 2012. Global food security index 2012: An assessment of food affordability, availability and quality.

Economic Intelligence Unit Report .

Garella, P. G., M. Peitz. 2007. Alliances between competitors and consumer information. Journal of the

European Economic Association 5(4) 823–845.

Geneva. 2005. Automotive industry trends affecting component suppliers. Report for discussion at the Tri-

partite Meeting on Employment, Social Dialogue, Rights at Work and Industrial Relations in Transport

Equipment Manufacturing .

Genicot, G., D. Ray. 2003. Group formation in risk-sharing arrangement. The Review of Economic Studies

70 87–113.

Girotra, K., S. Netessine. 2014. The risk-driven business model: Four questions that will define your company .

Harvard Business Press, Cambridge, MA.

Government of Canada. 2002. Govt response to the report of the house of commons standing committee on

industry, science and technology “a plan to modernize canada’s competition regime” 1–17.

Govt of India. 2013. Policy & process guidelines for farmer producer organizations 1–96.

Granot, D., S. Yin. 2008. Competition and cooperation in decentralized push and pull assembly systems.

Management Science 54(4) 733–747.

Gulati, R., H. Singh. 2008. The architecture of cooperation: Managing coordination costs and appropriation

concerns in strategic alliances. Administrative Science Quarterly 43(4) 781–814.
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Nagarajan, M., G. Sošić. 2007. Stable farsighted coalitions in competitive markets. Management Science

53(1) 29–45.
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Appendix

Common

n Number of suppliers

Notation

N The set of all suppliers

S Alliance structure: S = {S1, ..., Sm}
m Number of coalitions: m= |S |
Sk The set of suppliers in coalition k, k= 1,2, ..,m

Fi Reserve fund of supplier i, i= 1,2, ...n

FS Reserve fund of coalition S: FS =
∑

i∈S Fi
p Retail price of the assembler/buyer

c Production cost for each supplier

δ Outside option penalty for the assembler/buyer if some supplier defaults

QSk Supply limit of coalition Sk
qSk Order quantity of the downstream firm from coalition Sk
wSk Wholesale price of coalition Sk
w̃Sk Expected wholesale price for the buyer purchasing from coalition Sk

Complementary
W Wholesale price for the final product: W =

∑
wSk

Suppliers
q Order quantity of the assembler, q= qSk , k= 1,2, ...,m

cSk Production cost for coalition Sk: cSk = |Sk|c
C Total production cost for the final product: C = nc

Substitutable
Q Total supply limit: Q=

∑
QSk

Suppliers
q Order quantity of the buyer, q=

∑m

k=1 qSk
w̃ Market-clearance expected wholesale price

Table A1 Notations

D(p)
Parameter

Range
α β

Pass-Through
Rate

Linear-power Demand
(a− bp)θ a, b > 0, θ≥ 1 a/(bθ) −1/θ θ/(θ+ 1)

Exponential Demand
ae−bp

a, b > 0 1/b 0 1

Iso-elastic Demand
ap−b

a> 0, b > n 0 1/b b/(b− 1)

Table A2 Demand Functions D(p)
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Proof of Assumption 1 for Commonly Used Distributions

We prove that Assumption 1 holds for normal, exponential, and Erlang distribution respectively. Consider

the minimum reserve fund level among all suppliers F = mini{Fi}> E[ξi]. Then the reserve fund level for

any individual suppliers or coalitions, FS where S ∈N , can only take the value on {F}∪ [2F ,∞]. We thereby

denote F(F ) = {F}∪ [2F ,∞] the set of value reserve fund can set foot on given the minimum individual fund

level F . Then Assumption 1 essentially states that, for any F ∈ F and positive integer k, there are

(i) V1(F ) decreases in F .

(ii) Vk(kF ) decreases in k for any given F .

(iii) Gk(kF )/G1(F ) is a unimodal in F for any given k.

Lemma A1. Assumption 1 holds when ξi’s are i.i.d. on N(µ,σ2).

Proof of Lemma A1.

(i). First of all, we prove that
∂G(F )/F

∂F
=
g(F )F −G(F )

F 2
≤ 0 for F ≥ 2µ. Since

∂g(F )F −G(F )

∂F
= g

′
(F )<

0 for all the F ≥ µ, we only need to show that g(F )F −G(F )≤ 0 at F = 2µ. Note that g(F )F −G(F )|F=2µ ≤
2µ

1

σ
√

2π
e−

µ2

2σ − 1/2 which is maximized at µ = σ. Therefore, g(F )F −G(F )|F=2µ ≤
√

2

πe
− 1

2
< 0 hence

∂V1(F )

∂F
≤ 0 for F ≥ 2µ.

Finally, since F > µ it is obvious that G1(F ) > 1/2 > G1(2F ) − G1(F ). Thus 2G1(F ) > G1(2F ) and

V1(F )>V1(2F ) for any F >µ.

These prove that V1(F ) decreases in F on F0 = {F0}∪ [2F0,∞] for any F0 >µ.

For (ii) and (iii), without loss of generality, consider G1(·) the c.d.f. of standardized normal distribution

with mean 0 and standard deviation 1, and Gk(·) is the c.d.f. of normal distribution with mean 0 and

standard deviation
√
k (the case with general normal distribution could be proved in a similar fashion). It

can be verified that

Gk(kF ) =

∫ √kF

−∞

1√
2π
e−

x2

2 dx. (A1)

(ii). It is sufficient to show that
1

k
Gk(kF )≥ 1

k+ 1
Gk+1((k+ 1)F ) for any F > 0. By (A1),

1

k
Gk(kF ) =

1

k

∫ √kF

−∞

1√
2π
e−

x2

2 dx≥ 1

2k

and

Gk+1((k+ 1)F )−Gk(kF ) =

∫ √k+1F

√
kx

1√
2π
e−

x2

2 dx≤ 1√
2π

(
√
k+ 1−

√
k)Fe−

kF2

2

=
1√
2π

F√
k+ 1 +

√
k
e−

kF2

2 ≤ 1√
2π

1

2
√
k
Fe−

kF2

2

Note that Fe−
kF2

2 is maximized at F = 1/
√
k, we have Gk+1((k+ 1)F )−Gk(kF )≤ 1√

2π

1

2k
e−

1
2 . Thus

Gk+1((k+ 1)F )−Gk(kF )≤ 1√
2πe

1

2k
<

1

2k
≤ 1

k
Gk(kF ).

This proves that
1

k+ 1
Gk+1((k+ 1)F )≤ 1

k
Gk(kF ). Taking k= 1 we have V1(F )≥ V2(2F ).
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(iii). We prove that
∂G1(F )/Gk(kF )

∂F
= 0 for at most one F > 0. By (A1),

∂G1(F )/Gk(kF )

∂F
=
e−

F2

2

∫ √kF
−∞ e−

x2

2 dx−√ne−nF
2

2

∫ F
−∞ e

− x2
2 dx

(
∫ √kF
−∞ e−

x2

2 dx)2

=
e

(n−1)F2

2 /
√
n−G1(F )/Gk(kF )

e
nF2

2

∫ √kF
−∞ e−

x2

2 dx/
√
n

We will show that there exists a unique F > 0 such that

e
(n−1)F2

2√
n
− G1(F )

Gk(kF )
= 0. (A2)

Due to the nature of normal distribution, it is straightforward for any F > 0 that (1) G1(F )/Gk(kF )< 1;

(2) limF→0G1(F )/Gk(kF ) = limF→∞G1(F )/Gk(kF ) = 1. Therefore, the roots for
∂G1(F )/Gk(kF )

∂F
= 0 can

only be an odd number.

Suppose the root is not unique, e.g., there exist F0 <F1 <F2 satisfying
∂G1(F )/Gk(kF )

∂F
= 0. Moreover,

there should be
∂2G1(F )/Gk(kF )

∂F 2
is positive at F0 and F2, and negative at F1, implying that

G1(F1)

Gk(kF1)
>

G1(F2)

Gk(kF2)
. On the other hand, (A2) suggests that

G1(F1)

Gk(kF1)
=
e

(n−1)F2
1

2√
n

<
e

(n−1)F2
2

2√
n

=
G1(F2)

Gk(kF2)
. Contradiction.

Thus there exists a unique root F0 satisfying the first order condition, and G1(F )/Gk(kF ) is a unimodal

when F > 0. �

Next consider ξi follows Erlang distribution (r, θ), which is the sum of r i.i.d. random variable follow-

ing exponential distribution with mean θ. Since exponential distribution is achieved when r = 1, we prove

Assumption 1 for Erlang and exponential distributions together.

Lemma A2. Assumption 1 holds when ξi’s follow i.i.d. exponential or Erlang distribution with shape r

and inverse rate θ.

Proof of Lemma A2. Note that the sum of any k ξi’s will follow Erlang distribution (kr, θ) with c.d.f.

Gk(F ) = 1−
kr−1∑

i=0

(F
θ

)i

i!
e−

F
θ =

∑∞
i=kr

(F
θ
)i

i!

e
F
θ

(A3)

(i). We first prove that
∂V1(F )

∂F
< 0 when F ≥ 2E[ξi] = 2rθ. By (A3),

∂V1(F )

∂F
=

∑∞
i=r

(F/θ)i

(i−1)! e
F/θ −∑∞

i=r
(F/θ)i

i!
eF/θ −∑∞

i=r
(F/θ)i

i!
F
θ
eF/θ

F 2e2F/θ
=

(F/θ)r

(r−1)! −
∑∞

i=r
(F/θ)i

i!

F 2eF/θ
.

As F ≥ 2rθ, there is

(F/θ)r

(r− 1)!
−
∞∑

i=r

(F/θ)i

i!
<

(F/θ)r

(r− 1)!
−

2r∑

i=r

(F/θ)i

i!
=

(F/θ)r

(r− 1)!
[1−

r∑

i=0

(F/θ)i(r− 1)!

(r+ i)!
]<

(F/θ)r

(r− 1)!
[1− 1

r
(r+ 1)]< 0.

Thus ∂V1(F )/∂F < 0.

We next show that V1(F ) > V1(2F ), or equivalently, 2G1(F ) > G1(2F ), for any F > rθ. Note that

G1(2F )/G1(F ) =

∑∞
i=r

( 2F
θ

)i

i!

e
F
θ

∑∞
i=r

(F
θ
)i

i!

increases with r. Thus it is suffice to show 2G1(F )>G1(2F ) at r→∞. This

is true as limr→∞ 2G1(F ) = lim
r→∞

2(1−
∑r−1

i=0

(F
θ
)i

i!

e
F
θ

) = 0 = lim
r→∞

[1−
∑r−1

i=0

( 2F
θ

)i

i!

e
F
θ

] = lim
r→∞

G1(2F ).
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These prove that V1(F ) decreases in F on F0 for any F0 >E[θi] = rθ.

(ii). We will show that Vk(kF )≥ Vk+1((k+ 1)F ), or equivalently Gk(kF )

k
≥ Gk+1((k+1)F )

k+1
, for any k≥ 1 and

F ≥ rθ. By (A3),

∆k =

∑∞
i=kr

( kF
θ

)i

i!

ke
kF
θ

−
∑∞

i=(k+1)r

( (k+1)F
θ

)i

i!

(k+ 1)e
(k+1)F

θ

and

∂∆k

∂F
=

(kF/θ)kr−1

ekF/θ(kr− 1)!
− ((k+ 1)F/θ)kr+r−1

e(k+1)F/θ(kr+ r− 1)!
=
kkr−1(F/θ)kr+r−1

e(k+1)F/θ(kr− 1)!
[
eF/θ

(F/θ)r
− (

k+ 1

k
)kr

(k+ 1)r∏r

j=1(kr+ j)
].

It is suffice to verify that the above is positive at F/θ= r, or equivalently e
(1+1/k)k

≥ [ (k+1)r∏r
j=1(k+j/r)

]1/r. Note that

the RHS is increasing in r, and limr→∞[ (k+1)r∏r
j=1(k+j/r)

]1/r = e
∫ 1
0
ln k+1
k+x

dx = e1−k ln
k+1
k = e

(1+1/k)k
. Thus

∂∆k

∂F
≥ 0.

We next show that ∆k > 0 at F/θ= r, or essentially,

∑∞
i=kr

(kr)i

i!

krekr
−
∑∞

i=(k+1)r
((k+1)r)i

i!

(k+ 1)re(k+1)r
> 0 for any r≥ 1.

It is suffice to show that
∑∞

i=k
ki

i!

kek
−
∑∞

i=k+1
(k+1)i

i!

(k+ 1)ek+1
> 0. (A4)

For any s,x > 0, denote Γ(s,x) =
∫∞
x
ts−1e−tdt and γ(s,x) =

∫ x
0
ts−1e−tdt. Specifically when s and x are

positive integers, there are Γ(s,x) = (s − 1)!e−x
∑s−1

i=0
xi

i!
and γ(s,x) = (s − 1)!e−x

∑∞
i=s

xi

i!
. Then (A4) is

equivalent to

(k+ 1)γ(k, k)>γ(k+ 1, k+ 1), (A5)

and it is suffice to prove the above for any k > 0. Note that integration by parts implies that γ(k+ 1, k+

1) = kγ(k, k + 1)− (k + 1)kek+1. Thus (A5) becomes γ(k, k) + (k + 1)ke−(k+1) > k(γ(k, k + 1)− γ(k, k)) =

k
∫ k+1

k
tk−1e−tdt=

∫ k+1

k
e−tdtk. Integration by parts suggests that

∫ k+1

k
e−tdtk = e−ttk|k+1

k +
∫ k+1

k
tke−tdt=

e−(k+1)(k+ 1)k − e−kkk +
∫ k+1

k
tke−tdt. Since tk/et decreases on t when t≥ k, there is

∫ k+1

k
tke−tdt < kk/ek.

Thus
∫ k+1

k
e−tdtk < e−(k+1)(k + 1)k < e−(k+1)(k + 1)k + γ(k, k). (A5) holds for any k > 0 and consequently

(A4) for any positive integer k.

The above shows that
∂∆k

∂F
≥ 0 and ∆k > 0 at F/θ= r, which together prove that ∆k > 0.

(iii). We prove that
∂G1(F )/Gk(kF )

∂F
= 0 for at most one F > 0.

∂G1(F )/Gk(kF )

∂F
=
g1(F )Gk(kF )− kgk(kF )G1(F )

G2
k(kF )

=
gk(kF )

Gk(kF )

[
g1(F )

gk(kF )
− k G1(F )

Gk(kF )

]
(A6)

Note that for exponential distribution, g1(F )/gk(kF ) =
(kr− 1)!

(r− 1)!

θ(k−1)r

kkr−1
e

(k−1)F
θ

F (k−1)r is convex in F on [0,∞].

By (A3), there is
G1(F )

Gk(kF )
=

∞∑

i=r

(F
θ

)i

i!

/ ∞∑

i=kr

( kF
θ

)i

i!
. Thus lim

F→0

G1(F )

Gk(kF )
=∞ and lim

F→∞

G1(F )

Gk(kF )
= 1. Together

with (A6), it can be verified that lim
F→0

∂ G1(F )

Gk(kF )

∂F
< 0 and lim

F→∞

∂ G1(F )

Gk(kF )

∂F
> 0. Therefore, the roots for

∂G1(F )/Gk(kF )

∂F
= 0 can only be an odd number.
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Suppose the root is not unique, e.g., there exist F0 <F1 <F2 satisfying
∂G1(F )/Gk(kF )

∂F
= 0. Moreover,

∂2G1(F )/Gk(kF )

∂F 2
is positive at F0 and F2, and negative at F1, implying that

G1(F1)

Gk(kF1)
>

G1(F2)

Gk(kF2)
and

G1(F1)

Gk(kF1)
>

G1(F0)

Gk(kF0)
. On the other hand,

∂G1(F )/Gk(kF )

∂F
= 0 at F0, F1 and F2. Therefore, there should

also be
g1(F1)

gk(kF1)
>

g1(F2)

gk(kF2)
and

g1(F1)

gk(kF1)
>

g1(F0)

gk(kF0)
, which contradicts with the fact that g1(F )/gk(kF ) is a

convex function. Thus there exists a unique root F0 satisfying the first order condition and G1(F )/Gk(kF )

is a unimodal. �

Stage 2&3: Operational Decision Makings

Proof of Proposition 1 Denote the effective wholesale price of alliance Sk as w̃Sk = wSk +

Ḡ|Sk|(FSk)δSk and D−1(·) the inverse demand function. Then

• For the assembler dealing with complementary suppliers, the same order quantity applies to all alliances

and qS1
= qS2

= ...= qSm = q. The assembler’s expected profit Π0 is then

Π0(q) = max
q≤min{QSk}

q

(
D−1(q)−

m∑

k=1

w̃Sk

)

• for the buyer dealing with substitutable suppliers, the total order to place with the suppliers is q =
∑m

k=1 qSk . The buyer’s expected profit Π0 can be expressed as

Π0(qSk , k= 1,2, ...,m) = max
qSk
≤QSk , k=1,2,...,m

m∑

k=1

qSk
(
D−1(q)− w̃Sk

)

In either case, let q∗(w,Q) be the optimal order quantity that solves the above optimization problems.

Given (wS−k ,QS−k), supplier i in alliance Sk has the following profit if survived:

πi = max
0≤wSk ,0≤QSk

Fi
FSk

(wSk − cSk)q∗Sk

The analysis of the above problems is as follows.

• Assembly systems. In this case the assembler will order the same quantity from each alliance q =

qS1
= ... = qSm ≤ min{QS1

, ...,QSm}. Therefore, no alliance is incentivized to commit more capacity than

the others hence in equilibrium there should be QS1
= ...=QSm =Q. Similarly, noting that the production

amount q is also capped by the minimum capacity min{QS1
, ...,QSm}, it is also straightforward that alliances

will not invest in excess capacities, i.e., Q= q. Thus it is equivalent to consider a problem in which alliances

determine wholesale prices {wS1
, ...,wSk} first, and the assembler chooses order quantity q and retail price

p=D−1(q) accordingly. First consider the assembler’s problem. Taking into account of the effective expected

wholesale price she has to pay, the assembler practically needs to choose a retail price that maximizes her

expected profit maxpΠ0 = maxp
[
p−∑m

k=1

(
wSk + Ḡ|Sk|(FSk)δSk

)]
D(p). Solving the FOC gives

p∗ =
α+

∑m

k=1

(
wSk + Ḡ|Sk|(FSk)δSk

)

1−β (A7)

Given the assembler’s reaction in (A7), alliance k solves the following problem:

max
wSk

πSk = max
wSk

D(p∗)(wSk − cSk)G|Sk|(FSk) (A8)
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By (A7) we have
∂D(p∗)

∂wSk
=D

′
(p∗)

∂p∗

∂wSk
=D

′
(p∗)

1

1−β (A9)

The FOC of (A8) implies that
∂D(p∗)

∂w∗Sk
(w∗Sk − cSk) +D(p∗) =D

′
(p∗)

1

1−β (w∗Sk − cSk) +D(p∗) = 0 and by (1)

and (A7) we have

w∗Sk − cSk =−(1−β)
D(p∗)

D′(p∗)
= (1−β)(α+βp∗) = α+β

m∑

k=1

(
w∗Sk + Ḡ|Sk|(FSk)δSk

)
, i= 1,2, ...,m(A10)

Adding the m equations together, there is W ∗−C =mα+mβ

m∑

k=1

Ḡ|Sk|(FSk)δSk +mβW ∗. Hence

W ∗ =
mα+mβ

∑m

k=1 Ḡ|Sk|(FSk)δSk +C

1−mβ
Substituting the above into (A7) and (A10) gives the optimal retail price p∗ and equilibrium wholesale prices

w∗Sk immediately.

Note that when capacity cost is nontrivial, e.g., cK > 0, then similar results could be obtained by replacing

c for c+ cK . Therefore the structure of the equilibrium stays the same and it is without loss of generality for

us to assume cK = 0.

• Competitive Markets. Assume that effective expected wholesale prices are ordered with their index,

i.e., w̃Si ≤ w̃Sj if i < j. Basically, suppliers with smaller index are those more cost efficient under default risk.

Then a profit-maximizing buyer should start ordering from lower-indexed suppliers to higher-indexed ones.

That is, qS1
= QS1

,..., qSl−1
= QSl−1

, qSl < QSl for some 1 ≤ l ≤m, and qSl+1
= ... = qSm = 0. The buyer’s

expected profit Π0 can then be expressed as

Π0 = max∑l−1
k=1

QSk
≤q<

∑l
k=1QSk

l−1∑

k=1

QSk

(
D−1(q)− w̃Sk

)
+

(
q−

l−1∑

k=1

QSk

)
(
D−1(q)− w̃Sl

)

In solving the buyer’s problem, consider an adjusted demand function D̃(w) (its inverse function D̃−1 is

shown in Table A3), where

D̃(w) = arg max
q
qD−1(q)−wq

Then for a given l, the optimal solution to the buyer’s problem is q=
(
D̃(wSl)∨

∑l−1
k=1QSk

)
∧∑l

k=1QSk . Note

that D̃(wSl) is non-increasing in l. Then there exists a unique l∗ such that
∑l∗−1

k=1 QSk ≤ D̃(wSl∗ )<
∑l∗

k=1QSk

and q∗ = D̃(wSl∗ ).

Particularly when m= 2, the above problem falls the same as the capacity-constrained Bertrand problem

studied by Kreps and Scheinkman (1983), under demand function D̃(·). Many consequent papers (e.g., Boc-

card and Wauthy 2000, Moreno and Ubeda 2006, Lepore 2009) also prove the robustness of this result under

oligopoly scenario (m > 2). We therefore adopt the finding that capacity-constrained pricing competition

yields the same equilibrium as quantity competition, and consider a revised problem as follows:

The alliances determine the production quantities {qS1
, ..., qSm}, being aware that the buyer will procures

every unit that has been produced from alliance k at wholesale price wSk = w̃ − Ḡ|Sk|(FSk)δ where w̃ =

D̃−1 (
∑m

k=1 qSk). The retail price is set at p=D−1(q).
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D(p)
Parameter

Range
D̃−1(Q)

Linear-power Demand
(a− bp)θ a, b > 0, θ≥ 0 a/b−Q1/θ(1 + θ)/(bθ)

Exponential Demand
ae−bp

a, b > 0 ln(a/Q)1/b− 1/b

Iso-elastic Demand
ap−b

a> 0, b > n (a/Q)1/b(b− 1)/b

Table A3 Adjusted demand function D̃−1

Note that the buyer’s optimal reaction has already been counted in D̃. Thus it is optimal for her to

purchase all the available q units in the market at given effective expected wholesale price w̃. For this reason,

we refer w̃ as the market-clearance expected wholesale price. The problem can be solved by analyzing the

alliances’ decisions directly. Basically, Alliance k solves

max
qSk

πSk = max
qSk

qSk(D̃−1(q)− Ḡ|Sk|(FSk)δ− c)G|Sk|(FSk) (A11)

The FOC is

∂D̃−1(q)

∂q
qSk + D̃−1(q) = c+ Ḡ|Sk|(FSk)δ (A12)

We next prove the results based on linear-power demand. For other demand functions in Table A3, proofs

can be done in a similar fashion. Consider linear-power demand D(p) = (a− bp)θ. By Table A3,
∂D̃−1(q)

∂q
=

−1 + θ

bθ2
q1/θ−1. Thus the FOC requires −1 + θ

bθ2
q−1+1/θqSk +

a

b
− 1 + θ

bθ
q1/θ = c+ Ḡ|Sk|(FSk)δ, ∀k= 1, ..,m. The

sum of the m equations suggests that −1 + θ

bθ2
q1/θ +

ma

b
− 1 + θ

bθ
mq1/θ =mc̃, ∀k = 1, ..,m. It can be solved

that q∗ =

[
(a− bc̃)θ

1 + θ

mθ

1 +mθ

]θ
. Thus by Table A3 p∗ = D−1(q∗) = a/b − (q∗)1/θ/b =

a

b

1 + (m+ 1)θ

(1 + θ)(1 +mθ)
+

c̃
θ

1 + θ

mθ

1 +mθ
and w̃∗ = D̃−1(q∗) = a/b− (q∗)1/θ(1 + θ)/(bθ) =

a

b(1 +mθ)
+ c̃

mθ

1 +mθ
.

By Table A2 we know that for linear-power demand, α= a/(bθ) and β =−1/θ. It can be verified that

p∗ =
α+mc̃

(n−β)(1−β)
+

α

1−β , w̃∗ =
α+mc̃

m−β , w∗Sk =
α+mc̃

m−β − Ḡ|Sk|(FSk)δ =
α+βc̃

m−β + c+ c̃− ĉSk .

In addition, by (A12) q∗Sk/q
∗ =

1

m
+

1 +mθ

m

(
∑

i
Ḡ|Si|(FSi)δ/m− Ḡ|Sk|(FSk)δ)

a/b− c−∑
k
Ḡ|Sk|(FSk)δk/m

=
1

m
+

1−mβ
m

c̃− ĉSk
α+βc̃

. �

Corollary 1. As the number of coalitions m decreases,

(i) when the suppliers are complementary: the ex-post profit of each coalition increases, the expected profit

of the downstream firm (assembler) increases, and consumer surplus increases;

(ii) when the suppliers are substitutable and δ = 0: the ex-post profit of each coalition increases, the expected

profit of the downstream firm (buyer) decreases, and consumer surplus decreases.
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Proof of Corollary 1.

•Assembly Systems. It follows immediately from Proposition 1 that the total profit of coalition Sk if it sur-

vives is πSk = (w∗Sk − cSk)Q∗ =
α+βC̃

1−mβD
(

mα+ C̃

(1−mβ)(1−β)
+

α

1−β

)
and the expected profit for the assem-

bler is Π0 = (p∗ −
∑

w∗Sk − Ḡ|Sk|(FSk)δSk)Q∗ =

(
mα+ C̃

(1−mβ)

β

1−β +
α

1−β

)
D

(
mα+ C̃

(1−mβ)(1−β)
+

α

1−β

)
.

The results that
∂πSk
∂m

≤ 0 and
∂Π0

∂m
≤ 0 can be shown in a similar manner as Yin (2010) with C is substituted

by C̃.

In addition, if m is reduced due to a merger between two coalitions, it can be verified that C̃ is reduced.

As both πSk and Π0 decrease with C̃, the profits for both the supplier coalitions and the downstream firm

increase as a result of a smaller m.

For C̃,

∂πSk

∂C̃
=

β

1−mβD(p∗) +
α+βC̃

1−mβD
′
(p∗)

1

(1−mβ)(1−β)
∼ β+ (α+βC̃)

D
′
(p∗)

D(p∗)

1

(1−mβ)(1−β)

= β− (α+βC̃)
1

α+βp∗
1

(1−mβ)(1−β)
∼ β− 1< 0

and

∂Π0

∂C̃
=

β

(1−mβ)(1−β)
D(p∗) +

(
mα+ C̃

(1−mβ)

β

1−β +
α

1−β

)
D
′
(p∗)

1

(1−mβ)(1−β)

∼ β+

(
mα+ C̃

(1−mβ)

β

1−β +
α

1−β

)
D
′
(p∗)

D(p∗)
= β−

(
mα+ C̃

(1−mβ)

β

1−β +
α

1−β

)
1

α+βp∗
∼ β− 1< 0

Obviously C̃ increases with δ. So πSk and Π0 also decrease with δ.

• Competitive Markets. It follows immediately from Proposition 1 that the total profit of coalition Sk

if it survives is πSk = (w̃∗ − ĉSk)Q∗Sk =

[
α+mc̃− (m−β)ĉSk

m−β

]2
1

α+βc̃
D

(
α+mc̃

(m−β)(1−β)
+

α

1−β

)
. The

expected profit for the buyer is Π0 = (p∗− w̃∗)Q∗ =

(
α+mc̃

(m−β)

β

1−β +
α

1−β

)
D

(
α+mc̃

(m−β)(1−β)
+

α

1−β

)
.

Note that ∂
α+βc̃

m−β /∂m< 0 and πSk ∼
[
α+βc̃

m−β + c̃− ĉSk
]2
D

(
α+βc̃

m−β
1

1−β +
α+ c̃

1−β

)
, we can show

∂πSk
∂m

∼ 2

[
α+βc̃

m−β + c̃− ĉSk
](

∂
α+βc̃

m−β /∂m
)
D(p∗) +

[
α+βc̃

m−β + c̃− ĉSk
]2
D
′
(p∗)

1

1−β

(
∂
α+βc̃

m−β /∂m
)

∼ −2D(p∗)−
[
α+βc̃

m−β + c̃− ĉSk
]
D
′
(p∗)

1

1−β ∼−2 +

α+βc̃

m−β + c̃− ĉSk
(α+βp∗)(1−β)

= −2 +

α+βc̃

m−β + c̃− ĉSk
m

m−β (α+βc̃)
=−2 +

1 + (m−β)
c̃− ĉSk
α+βc̃

m
=−2 +Q∗Sk/Q

∗ < 0

Now consider
∂Π0

∂m
. We find that if D(p) = (a− bp)θ, then Π0(m)∼

(
mθ

1 +mθ

)θ+1

which increases with

m. If D(p) = ae−bp, then Π0(m)∼ a

be
e−1/m which also increases with m. Finally when D(p) = ap−b, there is

also Π0(m)∼
(
mb− 1

mb

)b−1
increasing with m. �
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U(m)

D(p) Complementary Suppliers Substitutable Suppliers

Linear-power Demand
(a− bp)θ

(
θ+m+ 1

θ+m

)θ+1 (
m+ 1

m

)2(
θ+ 1/(m+ 1)

θ+ 1/m

)θ+1

Exponential Demand
ae−bp

e

(
m+ 1

m

)2

e
− 1
m(m+1)

Iso-elastic Demand
ap−b

(
b−m

b−m− 1

)b−1 (
m+ 1

m

)2(
b− 1/m

b− 1/(m+ 1)

)b−1

Table A4 U(m) = π(m)/π(m+ 1) for Complementary vs. Substitutable Suppliers

Stage 1: Stable Coalition Structures

U(m) = π(m)/π(m+1) where π(m) is the ex-post profit each alliance receives if there is m coalitions in total.

It has been shown in the proof of Corollary 1 that the ex post profit of any alliance, πSk , depends upon the

number of coalitions that have been formed, m. Specifically when δ = 0, the ex-post profit for any alliance

under an m-coalition structure is π(m) =
α+βC

1−mβD
(

mα+C

(1−mβ)(1−β)
+

α

1−β

)
, which decreases with m.

The characterization for U(m) with complementary suppliers appeared in Yin (2010). The extended frame-

work in Huang et al (2012) developed the representations of U(m) for substitutable suppliers. See Table A4

for detailed representation. The following definition will be used throughout the rest of the proof.

Definition 2. A coalition structured K = {K1,K2, ...,Kl} is ordered if |FKt | ≤ |FKj | for any t < j.

1. Symmetric Suppliers

Given the recursive nature of the definition of coalition-proof equilibrium, we first characterize self-enforcing

strategies for one player, and then the coalition-proof Nash equilibrium (CPNE) for a one-player game. On

top of these results, we can further derive self-enforcing strategies and CPNE two and more players.

Single-player game: For an arbitrary player, suppose the rest of the n−1 players form ordered coalitions

{K1,K2, ...,Kl} where ni = |Ki| for i = 1, ..., l. The player has l + 1 strategies: join coalition Ki (if Ki

also accepts it) for i ∈ {1,2, ..., l}, or be an independent player. The expected profit for the single player

is Vni+1(F )π(l) and V1(F )π(l + 1) respectively. For each member in coalition Ki, the expected profit is

Vni+1(F )π(l) and Vni(F )π(l+1) respectively. Apparently, if the player wishes to join Ki, the coalition would

also accept it. CPNE are the ones that maximizes the player’s expected profit:

Lemma A3. The CPNE for the game with single-player s

(i) {K1 ∪{s},K2, ...,Kl}, that is, join K1, if U(l)≥ V1(F )

Vn1+1((n1 + 1)F )
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(ii) {{s},K1,K2, ...,Kl}, that is, be independent, if U(l)≤ V1(F )

Vn1+1((n1 + 1)F )

where ordered structure {K1,K2, ...,Kl} represents the strategy for the rest of the players N −{s}.

y-player game: Consider an arbitrary y players and the rest n− y players forming ordered structure

K = {K1,K2, ...,Kl} and ni = |Ki| for i= 1,2, ..., l. Then strategies of the y players will be in the form of

{P1, ..., Pa,K1 ∪Q1, ...,Kb ∪Qb,Kb+1, ...,Kl}

where |Pi|= pi > 0, for i= 1, ..., a, |Qj |= qj > 0 for j = 1, ..., b and
∑a

i=1 pi +
∑b

j=1 qj = y.

Consider assigning y players to the coalitions in K . Naturally, a feasible assignment Y = (y1, y2, ..., yl)

should satisfy
∑l

i=1 yi = y and yi ≥ 0 for any 1 ≤ i ≤ l. That is, allocate yi players to coalition Ki where

i= 1,2, ..., l. Among the numerous feasible assignments, we further define the efficient assignment as follows:

Definition 3. A feasible assignment Y is efficient if

(i) y1 ≥ y2 ≥ ...≥ yl
(ii) n1 + y1 ≤ n2 + y2 ≤ ...≤ nl + yl

(iii) for any feasible assignment Y
′
, b = max{i : yi > 0,1 ≤ i ≤ l} ≤ b′ = max{i : y

′

i > 0,1 ≤ i ≤ l} and

nb + yb ≤ nb′ + y
′

b
′ .

Denote the resulting structure of allocating y players to coalitions in K via the efficient assignment as

K ∗(K , y) = {K∗1 , ...,K∗l }, and n∗(K , y) = nb + yb. We can prove the following results for the CPNE with y

players:

Proposition A1. For y players, given that the rest of the n− y players form ordered structure K =

{K1,K2, ...,Kl},
(i) the CPNE satisfies a= 0 if and only if U(l)≥ V1(F )

Vn∗(K ,y)(n∗(K , y)F )
(ii) the CPNE satisfies 0<a< y, if and only if

U(l) ≤ V1(F )

Vn∗(K ,y)(n∗(K , y)F )
,

U(l+ i) ≤ V1(F )

Vn∗(Ii∪K ,y−i)(n∗(Ii ∪K , y− i)F )
for 1≤ i≤ a− 1,

U(l+ a) ≥ V1(F )

Vn∗(Ia∪K ,y−a)(n∗(Ia ∪K , y− a)F )

(iii) the CPNE is a= y if and only if

U(l) ≤ V1(F )

Vn∗(K ,y)(n∗(K , y)F )
,

U(l+ i) ≤ V1(F )

Vn∗(Ii∪K ,y−i)(n∗(Ii ∪K , y− i)F )
for 1≤ i≤ y− 1

where Ik is the coalition structure with k independent suppliers, i.e., Ik = {P1, ..., Pk} where |Pi| = 1 for

i= 1, ..., k.

Proof. We prove the proposition using math induction. By Lemma A5, the statements are true for y = 1.

Suppose that the same holds for y≤ Y − 1, we now prove that they are also true for y= Y .
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(i). We can show that the structure K ∗(K , Y ), which satisfies a= 0, is the CPNE when

U(l)≥ V1(F )

Vn∗(K ,y)(n∗(K , y)F )
(A13)

First, we prove that the K ∗ is self-enforcing (i.e., every subgroup plays CPNE) under (A13). Consider an

proper subset of the Y players, S. Let K ∗
−S denote the strategy for the rest of the n− |S| players in K ∗.

Apparently, efficiently assigning S into K ∗
−S results in the same structure K ∗. Hence n∗(K ∗

−S, y − |S|) ≤
n∗(K , y) and by (A13)

U(l)≥ V1(F )

Vn∗(K ∗−S ,y−|S|)(n
∗(K ∗

−S, y− |S|)F )
, ∀|S|<Y (A14)

Applying Proposition A1 (i) for y < Y , we know that K ∗ is the CPNE for any subset of players S also.

Therefore K ∗ is self-enforcing.

Second, we can show that K ∗ that strictly dominates any other strategy {P ′1, ..., P
′

a,K
′

1 ∪ Q
′

1, ...,K
′

b ∪
Q
′

b,K
′

b+1, ...,K
′

l } where a > 0. Comparing the expected profit, it is sufficient to prove that Vn∗(n
∗F )π(l)≥

Vmint=1,...,a;i=1,...,b{pt,ni+qi}( min
t=1,...,a;i=1,...,b

{pt, ni + qi}F )π(l+ a) or equivalently,

π(l)

π(l+ a)
≥
Vmint=1,...,a;i=1,...,b{pt,ni+qi}(mint=1,...,a;i=1,...,b{pt, ni + qi}F )

Vn∗(n∗F )
(A15)

By Corollary 1, π(l+ 1)≥ π(l+ a) hence
π(l)

π(l+ a)
≥U(l). Together with (A13),

π(l)

π(l+ a)
≥ V1(F )

Vn∗(n∗F )
≥
Vmint=1,...,a;i=1,...,b{pt,ni+qi}(mint=1,...,a;i=1,...,b{pt, ni + qi}F )

Vn∗(n∗F )
.

Hence (A15) holds. Also, K ∗ dominates other structures with a= 0 due to part (iii) of Definition 3.

Finally, we prove that K ∗ cannot be a CPNE if the reverse of (A13) holds. Consider the players that join

K1 under efficient assignment. Let S be this set of players, then n∗(K ∗
−S, y−|S|) = n∗(K , y). The reverse of

(A13) then implies the reverse of (A14). Applying Proposition A1 (i), it suggests that S is not playing its

CPNE strategy in K ∗. Thus K ∗ is not self-enforcing and cannot be CPNE.

(ii). By (i), when the reverse of (A13) holds, there should be a ≥ 1. Let 1 out of the Y player form a

new coalition and the revised structure is K
′

= I1 ∪K . By (i) the CPNE satisfies a = 1 if and only if

U(l+1)≥ V1(F )

Vn∗(K ′ ,y−1)(n
∗(K ′ , y− 1)F )

, and a≥ 2 if the reverse holds. The same argument carries for a< n.

(iii). The result is implied by the proof of (ii). �

Proof of Proposition 2 For a structure S = {S1, ..., Sm} to be CPNE, the strategy of each single

player s should satisfy Lemma A5 given the rest n− 1 players stay with the same strategy in S . Therefore

there must be

|Si−Sj | ≤ 1, ∀i, j ∈ {1, ...,m} (A16)

Otherwise, suppose Si−Sj ≥ 2 for some i 6= j. Then for an arbitrary supplier in Sj its strategy violates (i)

in Lemma A5 thus does not constitute a one-player CPNE. Also, given the number of coalitions m, there is

only one ordered structure that satisfies (A16), with |Sm|= dn/me and bn/mc ≤ |S1| ≤ dn/me. Denote such

structure as Sm. Then the CPNE, if ordered, should be belong to the set {Sm : 1≤m≤ n}. �
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Proof of Theorem 1 We can identify the conditions for various types of coalition being CPNE with the

aids of Proposition A1. Consider K = I1 and y= n− 1. Then l= 1, n∗(K , y) = n, and n∗(Ii ∪K , y− i) =

dn/(i+ 1)e. Proposition A1 (i) suggests that grand coalition among n players is CPNE if U(1)≥ V1(F )

Vn(nF )
.

The conditions for independent coalition and Sm be CPNE follow immediately after Proposition A1 (ii) and

(iii), respectively. �

Proof of Proposition 3.

(i) By Assumption 1 (b), Vk(kF )/V1(F ) is a unimodal in F . Thus for any
U(m)

d n
m
e , either that

U(m)

d n
m
e <

V1(F )

Vd n
m
e(d nmeF )

for all F >µ, or there exists µ<F
′
<F

′′
such that

U(m)

d n
m
e ≥

V1(F )

Vd n
m
e(d nmeF )

when F ∈ [F
′
, F
′′
].

Denote such interval [F
′
, F
′′
] as Fm. Suppose F /∈ ∪m−1k=1 Fk. Then according to Theorem 1, m coalitions

will be formed if F ∈Fm, and more than m coalitions will be formed otherwise, e.g., F > F
′′
. Thus larger

alliances are more likely to be formed with moderately small F .

(ii) By Assumption 1 (a),
∂Vk(kF )

∂k
< 0. Therefore,

V1(F )

Vk(kF )
increases with k. Followed by Theorem 1, large

alliances is more likely to be formed with small n. �

Proof of Proposition 4. (i). It is sufficient to show that U(m) increases with the pass-through rates

identified in Table A2. For linear-power demand, the pass-through rate is
θ

θ+ 1
. We only need to show that

U(m) is increasing in θ. For complementary suppliers,

UC(m) = (
θ+m+ 1

θ+m
)θ+1 =

[
(1 +

1

θ+m
)θ+m

] θ+1
θ+m

Since both (1 +
1

θ+m
)θ+m and

θ+ 1

θ+m
increase with θ, UC(m) should be increasing in θ. For substitutable

suppliers,

US(m) ∼ (
θ+ 1/(m+ 1)

θ+ 1/m
)θ+1 =

[
1 +

1

m(m+ 1)θ+m

]−θ−1
=

[(
1 +

1

m(m+ 1)θ+m

)m(m+1)θ+m
] −θ−1
m(m+1)θ+m

As m> 1, both

(
1 +

1

m(m+ 1)θ+m

)m(m+1)θ+m

and
−θ− 1

m(m+ 1)θ+m
increase with θ. Therefore US(m) also

increases with θ. The proof with iso-elastic demand is similar.

(ii). Since the nature of the suppliers only affect the first component of RASF, it is sufficient to show

that U(m) for substitutable suppliers are overall smaller than those for complementary suppliers. First

consider exponential demand. By Table A4, lnUC(m) = 1 and lnUS(m) = 2 ln

(
1 +

1

m

)
− 1

m
+

1

m+ 1
=

2

∞∑

k=1

(−1)k+1

kmk
− 1

m
+

1

m+ 1
=

1

m
+

1

m+ 1
+ 2

∞∑

k=2

(−1)k+1

kmk
. Since

∞∑

k=2

(−1)k+1

kmk
≤ 0 and for m≥ 2 there is 1>

1

m
+

1

m+ 1
, we have lnUS(m)≤ lnUC(m) for m> 1. It can also be verified that lnUS(1) = .89≤ lnUC(1) = 1.

Therefore the statement holds for exponential demand.

For linear-power demand, it can be verified that UC(m) = US(m) when θ = 1. To show that UC ≥
US for general θ, it is then suffice to prove that ∂UC(m)

/
∂θ ≥ ∂US(m)

/
∂θ for all θ ≥ 1. Note

that ∂ lnUC(m)
/
∂θ = ln

(
θ+m+ 1

θ+m

)θ+1

− θ+ 1

(θ+m)(θ+m+ 1)
=

∞∑

k=1

(−1)k+1

k(θ+m)k
− θ+ 1

(θ+m)(θ+m+ 1)
=
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∞∑

k=3

(−1)k+1

k(θ+m)k
+

m− θ+m+ 1

2(θ+m)

(θ+m)(θ+m+ 1)
and ∂ lnUS(m)

/
∂θ= ln

(
θ+ 1/(m+ 1)

θ+ 1/m

)θ+1

+
θ+ 1

(mθ+ 1)[(m+ 1)θ+ 1]
=

∞∑

k=1

−1

k[m(m+ 1)θ+m+ 1]k
+

θ+ 1

(mθ+ 1)[(m+ 1)θ+ 1]
=

∞∑

k=2

−1

k[m(m+ 1)θ+m+ 1]k
+

1− 1/(m+ 1)

(mθ+ 1)[(m+ 1)θ+ 1]
.

Obviously for θ ≥ 0 and m ≥ 1, there are

∞∑

k=3

(−1)k+1

k(θ+m)k
≥ 0 ≥

∞∑

k=2

−1

k[m(m+ 1)θ+m+ 1]k
and

m− θ+m+ 1

2(θ+m)

(θ+m)(θ+m+ 1)
≥ 1− 1/(m+ 1)

(mθ+ 1)[(m+ 1)θ+ 1]
. Thus ∂ lnUC(m)

/
∂θ ≥ ∂ lnUS(m)

/
∂θ for any θ > 0. Given

UC =US at θ= 1, this proves that UC(m)≥≤US(m) for all θ≥≤ 1.

The case with iso-elastic demand can be proved in a a similar fashion. �

Proof of Corollary 5 The main statement follows Theorem 1 and Proposition 3 (i). To show that

independent structure will be formed for substitutable suppliers when F →∞, we first note from Table A4

that ∂U(m)/∂m≤ 0 for substitutable suppliers, and

Lemma A4. For all demand functions D(p), 3>U(1)≥ 2>U(2)≥ ...≥U(m)≥ 1.

Proof. U(m) ≥ 1 is true by the definition of U(m). Further, as U(m) decreases with m, it is

suffice to show that 3 > U(1) ≥ 2 > U(2). For linear-power demand D(p) = (a − bp)θ, we have

U(1) = 4

(
1/2 + θ

1 + θ

)θ+1

and U(2) =
9

4

(
1/3 + θ

1/2 + θ

)θ+1

. Obviously both U(1) and U(2) increase with θ.

Therefore U(1) ≥ 4

(
1/2 + θ

1 + θ

)θ+1∣∣∣
θ=0

= 2. On the other hand, U(1) = 4

(
1− 1/2

1 + θ

)1+θ

and U(2) =

9

4

(
1− 1/6

1/2 + θ

)1/2+θ(
1− 1/6

1/2 + θ

)1/2

. Thus limθ→∞U(1) = 4e−1/2 = 2.43< 3 and limθ→∞U(2) =
9

4
e−1/6 =

1.9 < 2. For exponential demand D(p) = ae−bp, it can be numerically verified that 3 > U(1) = 2.43 >

2 > U(2) = 1.90. For iso-elastic demand D(p) = ap−b, we have U(1) = 4

(
b− 1

b− 1/2

)b−1
and U(2) =

9

4

(
b− 1/2

b− 1/3

)b−1
. Both U(1) and U(2) decrease with b. As there must be b > n and n ≥ 2, b must be at

least 3. Thus U(1) ≤ 4

(
b− 1

b− 1/2

)b−1 ∣∣∣
b=3

=
64

25
< 3 and U(2) ≤ 9

4

(
b− 1/2

b− 1/3

)b−1 ∣∣∣
b=3

=
2025

1024
< 2. Finally,

U(1) = 4

(
1− 1/2

b− 1/2

)b−1/2(
1− 1/2

b− 1/2

)−1/2
. Therefore limb→∞U(1) = 4e−1/2 = 2.43> 2. We can see that

for all D(p) there is 3>U(1)≥ 2>U(2). This proves the lemma. �

We next identify CPNE of the substitutable suppliers using Lemma A4 and Theorem 1. When

n = 2, Lemma A4 suggests U(1) ≥ 2 = limF→∞ V1(F )/V2(2F ). Therefore RASF1 ≥ 0 and grand

coalition is the CPNE. When n > 2, the RASFs can be approximated by RASFm → U(m) −
d n
m
e lim
F→∞

V1(F )/V
d
n

m
e(d

n

m
eF ) =U(m)−d n

m
e. Then RASF1 =U(1)−n< 0. For any 2≤m≤ n− 1, d n

m
e ≥

2>U(m) hence RASFm < 0. Therefore independent structure is the CPNE. �

2. Asymmetric Suppliers

Definition 4. A coalition structured K = {K1,K2, ...,Kl} is F -ordered if Vni+1(F +FKi)≥ Vnj+1(F +

FKj ) for any i < j.
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Single-player game: For an arbitrary player with reserve fund F , suppose the rest of the n− 1 players

form F -ordered coalitions {K1,K2, ...,Kl} where ni = |Ki| for i= 1, ..., l. The player has l+ 1 strategies: join

coalition Ki (if Ki also accepts it) for i∈ {1,2, ..., l}, or be an independent player. The expected profit for the

single player is Gni+1(F + FKi)
F

F +FKi
π(l) and G1(F )π(l+ 1) respectively. For each member in coalition

Ki with reserve fund level L, the expected profit is Gni+1(F +FKi)
L

F +FKi
π(l) and Gni(FKi)

L

FKi
π(l+ 1)

respectively. CPNE are the ones that maximizes the player’s expected profit:

Lemma A5. The CPNE for the game with single-player s with reserve fund level F is:

(i) {K1 ∪{s},K2, ...,Kl}, that is, join K1, if U(l)≥ V1(F )

Vn1+1(F +FK1
)
,

(ii) {{s},K1,K2, ...,Kl}, that is, be independent, if U(l)≤ V1(F )

Vn1+1(F +FK1
)

where {K1,K2, ...,Kl} is an F -ordered structure among the rest of the players N −{s}.

y-player game. Consider a set of suppliers S with size y and the other n − y players N/S forming

coalitions K = {K1, ...,Kl}. Similar to that in the symmetric case, strategies of the y players will be in the

form of

{P1, ..., Pa,K1 ∪Q1,K2 ∪Q2, ...,Kl ∪Ql} (A17)

where a, l ≥ 0, |Pi| = pi > 0, for i = 1, ..., a, |Qj | = qj ≥ 0 for j = 1, ..., l and
∑a

i=1 pi +
∑l

j=1 qj = y. If all

members in S join the coalitions in K without forming any additional coalition (a= 0), the strategy can

be expressed by Q = {Q1, ...,Ql}, where Qj ∩Qp = ∅ for any j 6= p and
⋃l

i=1Qi = S. The coalition structure

will be revised to K
′
= {K ′1, ...,K

′

l }= {K1 ∪Q1, ...,Kl ∪Ql}. We can show the following:

Definition 5. Supplier coalitions {K1, ...,Kl} are V-similar if Vni(FKi) ≥ Vnj+1(FKj + Fs) ∀i, j ∈
{1,2, ..., l} and s∈Ki.

Lemma A6. Given players N/S form coalitions K = {K1, ...,Kl} and an a= 0 strategy Q = {Q1, ...,Ql}
for players in S.

(i) Q is self-enforcing only if U(l) ≥ max1≤i≤l,s∈Qi{
V1(Fs)

Vn′
i
(FK′

i
)
,} and {K ′1, ...,K

′

l } are V-similar, where

K
′
= {K1 ∪Q1, ...,Kl ∪Ql};

(ii) Q is a CPNE if the conditions in (i) hold and for any other strategy Q
′

= {Q′1, ...,Q
′

l} that also

satisfies the conditions in (i), Q is not strongly dominated by Q
′
;

(iii) if the conditions in (i) hold, any strategy as in (A17) with a> 0 is not a CPNE.

Proof.

(i) A self-enforcing strategy should form the NE for any single-player game. By Lemma A5 the two

conditions are necessary to hold.

(ii) The statement obviously holds for y = 1. Suppose it also holds for any set with size y ≤ Y − 1. Now

consider the set S with size Y . For any S
′ ⊂ S, denote QS

′ the strategy for S
′
, Q−S′ the strategy for S/S

′

and K
′

−S′ the coalition structure for the n−|S′ | suppliers N/S
′

in K
′
. Then by definition, Q is self-enforcing

if for all S
′ ⊂ S, QS

′ is the CPNE given suppliers in N/S
′

act according to K
′

−S′ . Note that the lemma holds

for |S′ |<Y . Applying these to all S
′ ⊂ S, we can see that Q is self-enforcing under the stated conditions.
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Next, we need to verify that Q is not be strongly dominated by another self-enforcing strategy. First,

we can show that any self-enforcing strategy {P1, ..., Pa,Q1, ...,Ql}, where
⋃a

i=1Pi
⋃l

j=1Qj = S and a 6= 0, is

dominated by a self-enforcing strategy Q
′
= {Q′1, ...,Q

′

l}, where
⋃l

j=1Q
′

j = S. The former results in coalition

structure {P1, ..., Pa,K1∪Q1, ...,Kl∪Ql} and the later forms coalitions {K1∪Q′1, ...,Kl∪Q′l}. It is sufficient

to show that

π(l)L min
i:Ki∪Q

′
i
contains at least one low-endowed supplier

Vni+q′i
(FKi∪Q′i

) (A18)

≥ π(l+ a)L max
Pj ,Ki∪Qi contains at least one low-endowed supplier

{Vpj (FPj ), Vni+qi(FKi∪Qi)}
and

π(l)H min
i:Ki∪Q

′
i
contains at least one high-endowed supplier

Vni+q′i
(FKi∪Q′i

) (A19)

≥ π(l+ a)H max
Pj ,Ki∪Qi contains at least one high-endowed supplier

{Vpj (FPj ), Vni+qi(FKi∪Qi)}

Note that {K1 ∪Q′1, ...,Kl ∪Q′l} needs to satisfy the CPNE condition for any single supplier. Then for any

Ki ∪Q′i containing a low-endowed supplier, there should be U(l)≥ V1(L)

Vni+q′i
(FKi∪Q′i

)
. Therefore,

U(l)≥ V1(L)

mini:Ki∪Q′i contains at least one low-endowed supplier Vni+q′i
(FKi∪Q′i

)
.

Since π(l)/π(l+a)≥U(l), (A18) is immediately implied by the above and Assumption 1 (a). Similar argument

applies to any high-endowed supplier, which will derive (A19).

In addition, as Q = {Q1, ...,Ql} is not dominated by any other self-enforcing strategy Q
′
= {Q′1, ...,Q

′

l},
Q is a CPNE under the stated conditions. The statement also holds true for y= Y .

(iii) is proved in the course of (ii) (a). �

Proposition A2. Consider a set of players S of size |S|=y, and the rest of the n− y players forming

ordered coalitions KN/S = {K1,K2, ...,Kl}. There exists a set of functions T1, T2, ..., Ty such that

(i) the CPNE satisfies a= 0 if and only if U(l)≥ T1(KN/S, S)

(ii) the CPNE satisfies 0< a< y, if and only if U(l+ i)≤ Ti+1(KN/S, S) for 0≤ i≤ a− 1 and U(l+ a)≥
Ta+1(KN/S, S).

(iii) the CPNE is a= y if and only if U(l+ i)≤ Ti+1(KN/S, S), for 0≤ i≤ y− 1.

Proof. (i) The CPNE satisfies a = 0 if some strategy Q = {Q1, ...,Ql} where
⋃l

i=1Qi = S is CPNE. By

Lemma A6, it requires that

U(l)≥= min
Q
{ max
1≤i≤l,s∈Qi

{ V1(Fs)

Vn′
i
(FK′

i
)
} :

l⋃

j=1

Qj = S and {K ′1, ...,K
′

l } are V-similar} (A20)

The RHS of (A20) defines T1(KN/S, S).

(ii). If U(l)≤ T1(K , S), then a≥ 1. That is, the players S will form at least one additional coalition of

their own. With a slight abuse of notation, consider adding a void empty coalition K0 to the structure K .

That is, K = {K0,K1,K2, ...,Kl}. Then Lemma A6 still applies. Therefore the CPNE satisfies a= 1 if

U(l)≥= min
Q
{ max
0≤i≤l,s∈Qi

{ V1(Fs)

Vn′
i
(FK′

i
)
} :
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l⋃

j=0

Qj = S and {K ′0, ...,K
′

l } are of similar sizes} (A21)

Then the RHS defines T2(KN/S, S). Similar to the proof of Lemma A6, we can prove that the CPNE satisfies

a = 1 when U(l + 0) ≤ T1 and U(l + 1) ≥ T2. The proof for other values of a follows in a similar fashion.

Specifically, let K = {K−a+1, ...,K0,K1, ...,Kl} where Ki’s are empty sets for i≤ 0. Then

Ta+1(KN/S, S) = min
Q
{ max
−a+1≤i≤l,s∈Qi

{ V1(Fs)

Vn′
i
(FK′

i
)
} :

l⋃

j=−a+1

Qj = S and {K ′−a+1, ...,K
′

l } are of similar sizes}

(iii). Followed by (i) and (ii), the CPNE must be a= |S|= y under this condition. �

Proof of Theorem 2. We prove the theorem under the aids of Proposition A2. Let S be the set of

an arbitrary n− 1 suppliers, and N/S = {s}. Then KN/S = {{s}} consists of a collation of an independent

supplier s hence l= 1. According to Proposition A2 (i),

T1({{s}},N/{s}) = max
b∈N/{s}

V1(Fb)

Vn(FN)

Grand coalition is the unique CPNE i.i.f. U(1) ≥ T1({{s}},N/{s}) for any s ∈ N . Since N contains both

high- and low-endowed suppliers, we need

U(1)≥max{ V1(L)

Vn(FN)
,
V1(H)

Vn(FN)
}.

This proves (i).

Following the same steps, we can identify that two coalitions will be formed if

U(1) ≤ max{ V1(L)

Vn(FN)
,
V1(H)

Vn(FN)
} and for any s ∈ N there is U(2) ≥ T2({{s}},N/{s}) =

min{maxb0∈Q0,b1∈Q1
{ V1(Fb0)

V|Q0|(FQ0
)

V1(Fb1)

V|Q1|+1(FQ1
+Fs)

}} for all Q0

⋃
Q1 = N/{s} and

{Q0,Q1

⋃{s}} are V-similar. Overall, we need U(2) ≥ min{max1≤i≤2,b∈Si{
V1(Fb)

V|Si|(FSi)
:

Q is a 2-partition of S and {Qi}21 are V-similar}. The same can be proved for other m’s. �

Proof of Proposition 6. Consider nHH + nLL = nHH
′

+ nLL
′

and H/L > H
′
/L
′
. There should be

L < L
′
<H

′
<H. By Theorem 2 (i), grand coalition is more likely to be stable under (L

′
,H
′
) if T1 ≥ T ′1.

Note that V
′

1 (F ) = Fg(F )−G(F )

F2 and ∂
∂F

[Fg(F ) − G(F )] = g
′
(F ) < 0 for F ≥ E[ξi]. Thus V1(F ) is concave

on [E[ξi],∞). It can be verified that for exponential distribution, there will always be V
′

1 (F ) ≤ 0. Thus

T1 = max{V1(L)/Vn(FN), V1(H)/Vn(FN)}>max{V1(L
′
)/Vn(FN), V1(H

′
)/Vn(FN)}= T

′

1, and grand coalition

is more likely to be stable in the latter setting. For normal and Erlang distribution, suppose V
′

1 (F ) = 0 at

F = F̂ . Then T1 >T
′

1 when H >L≥ F̂ . The same will also hold when L<H ≤ F̂ . Thus the statement holds

true when reserve fund levels are all above or below some threshold. �

Proof of Proposition 7. As nH/nL >n
′

H/n
′

L, nHH+nLL= n
′

HH
′
+n

′

LL
′
andH/L=H

′
/L
′
, there should

be L<L
′

and H <H
′
. Followed by the same argument as in the proof of Proposition 6, V1(F ) is concave on

[E[ξi],∞). Also, V
′

1 (F )≤ 0 under exponential distribution. Thus T1 = max{V1(L)/Vn(FN), V1(H)/Vn(FN)}=

V1(L)/Vn(FN)>V1(L
′
)/Vn(FN) = max{V1(L

′
)/Vn(FN), V1(H

′
)/Vn(FN)}= T

′

1. By Theorem 2 (i), it is more

likely for T
′

1 to exceed U(1), which implies the stability of grand coalition. For normal and Erlang distribution,

suppose V
′

1 (F ) = 0 at F = F̂ . Then T1 ≥ T ′1 as long as H >L≥ F̂ . �
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Robustness Analysis

Equilibrium Investment Decisions

Lemma A7.
V1(L)

Vk(L+ (k− 1)F )
decreases in L, when ξi follows i.i.d. exponential distribution.

Proof.

∂

∂L

[
V1(L)

Vk(L+ (k− 1)F )

]
=

∂

∂L

[
G1(L)

Gk(L+ (k− 1)F )

L+ (k− 1)F

L

]

= −G1

Gk

(k− 1)F

L2
+ (

g1
Gk

− gk
G1

G2
k

)(1 +
(k− 1)F

L
)

=
G1

Gk

[
− (k− 1)F

L2
+ (

g1
G1

− gk
Gk

)(1 +
(k− 1)F

L
)

]

To prove that ∂
∂L

[
V1(L)

Vk(L+(k−1)F )

]
< 0 one needs to show that − (k−1)F

L2 + ( g1
G1
− gk

Gk
)(1 + (k−1)F

L
)< 0 or equiva-

lently
g1(L)

G1(L)
− gk(L+ (k− 1)F )

Gk(L+ (k− 1)F )
≤ 1

L
− 1

L+ (k− 1)F
.

By (A3),

gk(x)

Gk(x)
=

1
θ
(x
θ
)k−1/(k− 1)!
∑∞

i=k
(x/θ)i

i!

=
1

θ(k− 1)!

1
∑∞

i=k
(x/θ)i+1−k

i!

=
1

(k− 1)!

1∑∞
i=k

xi+1−k

i!θi−k

increases in k. Thus
gk(x)

Gk(x)
≥ g1(x)

G1(x)
=

1
θ

e
x
θ − 1

.

Also, it can be verified that
1

ex− 1
− 1

x
increases in x. Hence g1(x)

G1(x)
− 1

x
=

1
θ

e
x
θ −1
− 1

x
increases in x. Therefore,

g1(L)

G1(L)
− gk(L+ (k− 1)F )

Gk(L+ (k− 1)F )
≤ g1(L)

G1(L)
− g1(L+ (k− 1)F )

G1(L+ (k− 1)F )
≤ 1

L
− 1

L+ (k− 1)F
.

�

Given reserve fund level F . Suppose that m coalitions will be formed if Fj = F for j = 1,2, ..., n.

Lemma A8. There exist lm+k ≤ ...≤ lm+1 ≤ lm ≤ F and F ≤Hm ≤Hm+1 ≤ ...≤Hm+t for some k, t≥ 0,

such that

(i) m coalitions will be formed if there are n− 1 suppliers with reserve fund F and one supplier i with

reserve fund Lm ≤ Fi ≤ F or F ≤ Fi ≤Hm;

(ii) m+ l coalitions will be formed if there are n− 1 suppliers with reserve fund F and one supplier i with

reserve fund Lm+l ≤ Fi ≤Lm+l−1 or Hm+l−i ≤ Fi ≤Hm+l.

(ii) m+ k (resp. m+ t) coalitions will be formed if there are n− 1 suppliers with reserve fund F and one

supplier i with reserve fund Fi ≤Lm+l (resp. Fi ≥Hm+l).

Proof. Without loss of generality, consider one supplier with reserve fund level L and n− 1 supplier with

reserve fund level H. V-similar coalition structure can only be (1) bn/mc high-endowed suppliers, (2) bn/mc
high-endowed suppliers and 1 low-endowed suppliers, (3) dn/me high-endowed suppliers. Let k = bn/mc.
Then by Theorem 2 and Lemma A7, Tm = max{ V1(L)

Vk+1(L+ kH)
,

V1(H)

Vk+1((k+ 1)H)
,
V1(H)

Vk(kH)
}=

V1(L)

Vk+1(L+ kH)
is decreasing in L. In other words, larger L yields smaller Tm thus larger alliances will be formed (smaller

m∗).
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Similarly, for one supplier with reserve fund level H and n − 1 supplier with reserve fund level

L, the V-similar coalition structure can only be (1) k low-endowed suppliers, (2) k + 1 low-endowed

suppliers, and (3) k
′

low-endowed suppliers and 1 high-endowed suppliers, where k
′ ≤ k. Thus Tm =

max{ V1(L)

Vk′+1(H + k′L)
,

V1(L)

Vk+1((k+ 1)L)
,
V1(L)

Vk(kL)
} = max{ V1(L)

Vk′+1(H + k′L)
,

V1(L)

Vk+1((k+ 1)L)
} increases in H.

That is, larger H yields larger Tm thus smaller alliances will be formed (larger m∗).

These prove the three points all together. �

Proof of Proposition 8. Consider the reserve fund F such that m coalitions will be formed if Fj = F for

j = 1,2, ..., n. For any supplier i, assume that all the other n− 1 suppliers invest at F . Then if the supplier

i also invests at F , the expected profit is π(m)G n
m

(
n

m
F )

F
n
m
F
− vF . If it invests at L < F such that m+ l

coalitions, where 0≤ l ≤ n−m, will be formed, then the expected profit is π(m+ l)G n
m+l

((
n

m+ l
− 1)F +

L)
L

( n
m+l
− 1)F +L

− vL. Supplier i then prefers investing at F than Lm+l ≤L<Lm+l−1 if

v ≤
π(m)G n

m
(
n

m
F )

F
n
m
F
−π(m+ l)G n

m+l
((

n

m+ l
− 1)F +L)

L

( n
m+l
− 1)F +L

F −L
= π(m)V n

m
(
n

m
F )− L

F −L

[
π(m+ l)V n

m+l
((

n

m+ l
− 1)F +L)−π(m)V n

m
(
n

m
F )

]
(A22)

and prefers investing at F than Lm ≤L<F if

v ≤
π(m)G n

m
(
n

m
F )

F
n
m
F
−π(m)G n

m
((
n

m
− 1)F +L)

L

( n
m
− 1)F +L

F −L
= π(m)V n

m
(
n

m
F )− L

F −L
[
π(m)V n

m
((
n

m
− 1)F +L)−π(m)V n

m
(
n

m
F )
]

(A23)

Note that for the second component in (A23) there is

L

F −L
[
π(m)V n

m
((
n

m
− 1)F +L)−π(m)V n

m
(
n

m
F )
]

= π(m)
L

F −L


G n

m
(( n
m
− 1)F +L)

( n
m
− 1)F +L

−
G n
m

(
n

m
F )

n
m
F




= π(m)
L

F −L

[ n
m
FG n

m
(( n
m
− 1)F +L)− [( n

m
− 1)F +L]G n

m
( n
m
F )

[( n
m
− 1)F +L] n

m
F

]

= π(m)
m

nF

L

( n
m
− 1)F +L

(
n

m
F

(G n
m

(( n
m
− 1)F +L)−G n

m
( n
m
F )

F −L +G n
m

(
n

m
F )

)

which increases in L hence maximized at L= F .

For the second component in (A22) we can show the following:

(a) L
F−L

[
π(m+ l)V n

m+l
((

n

m+ l
− 1)F +L)−π(m)V n

m
(
n

m
F )

]
increases in L, as

L

F −L

[
π(m+ l)V n

m+l
((

n

m+ l
− 1)F +L)−π(m)V n

m
(
n

m
F )

]

=
L

F −L


π(m+ l)G n

m+l
(( n
m+l
− 1)F +L)

( n
m+l
− 1)F +L

−
π(m)G n

m
(
n

m
F )

n
m
F




=
L

F −L

n
m
Fπ(m+ l)G n

m+l
(( n
m+l
− 1)F +L)− [( n

m+l
− 1)F +L]π(m)G n

m
(
n

m
F )

[( n
m+l
− 1)F +L]( n

m
)F
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=
m

nF

L

( n
m+l
− 1)F +L




n
m
π(m+ l)G n

m+l
(( n
m+l
− 1)F +L)− n

m+l
π(m)G n

m
(
n

m
F )

F −L F +π(m)G n
m

(
n

m
F )




which apparently increases in L hence maximized at L=Lm+l−1.

(b) By Theorem 2, at L=Lm+l−1,

π(m+ l− 1)V n
m+l−1

((
n

m+ l− 1
− 1)F +L)≥ π(m+ l)V1(L)≥ π(m+ l)V n

m+l
((

n

m+ l
− 1)F +L)

Therefore, the upper bound for v is minimized at L= F and supplier i would not invest at any L< F if

any only if

v ≤
∂

{
π(m)G n

m
((
n

m
− 1)F +L)

L

( n
m
− 1)F +L

}

∂L
|L→F = π(m)

[
g n
m

(
n

m
F )
m

n
+V n

m
(
n

m
F )
n−m
n

]

Followed by a similar argument, if supplier i invests at H > F such that m+ l coalitions, where 0≤ l ≤
n−m, will be formed, then the expected profit is π(m+ l)G n

m+l
((

n

m+ l
− 1)F +L)

H

( n
m+l
− 1)F +H

− vH.

Supplier i then prefers investing at F than Hm+l ≥H >Hm+l−1 if

v ≥
π(m+ l)G n

m+l
((

n

m+ l
− 1)F +H)

H

( n
m+l
− 1)F +H

−π(m)G n
m

(
n

m
F )

F
n
m
F

H −F
= π(m)V n

m
(
n

m
F )− H

H −F

[
π(m)V n

m
(
n

m
F )−π(m+ l)V n

m+l
((

n

m+ l
− 1)F +H)

]
(A24)

and prefers investing at F than Hm ≥H >F if

v ≥
π(m)G n

m
((
n

m
− 1)F +H)

H

( n
m
− 1)F +H

−π(m)G n
m

(
n

m
F )

F
n
m
F

H −F
= π(m)V n

m
(
n

m
F )− H

H −F
[
π(m)V n

m
(
n

m
F )−π(m)V n

m
((
n

m
− 1)F +H)

]
(A25)

For the second component in (A25) there is

H

H −F
[
π(m)V n

m
(
n

m
F )−π(m)V n

m
((
n

m
− 1)F +H)

]
= π(m)

H

H −F



G n
m

(
n

m
F )

n
m
F

−
G n
m

(( n
m
− 1)F +H)

( n
m
− 1)F +H




= π(m)
H

H −F
[( n
m
− 1)F +H]G n

m
( n
m
F )− n

m
FG n

m
(( n
m
− 1)F +H)

[( n
m
− 1)F +H]m

n
F

= π(m)
m

nF

H

( n
m
− 1)F +H

[
G n
m

(
n

m
F )− n

m
F
G n
m

(( n
m
− 1)F +H)−G n

m
( n
m
F )

H −F

]

which is minimized at H = F .

In a similar fashion as the L case, we can show that for the second component in (A24) with given l,

H
H−F

[
π(m)V n

m
(
n

m
F )−π(m+ l)V n

m+l
((

n

m+ l
− 1)F +H)

]
decreases in H, and for boundary H = Hm+l−1,

there is

π(m+ l− 1)V n
m+l−1

((
n

m+ l− 1
− 1)F +H)≥ π(m+ l)V1(F )≥ π(m+ l)V n

m+l
((

n

m+ l
− 1)F +H).
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Hence the lower bound of v is maximized at H = F . That is, supplier i would not invest at any H >F if any

only if

v ≥
∂

{
π(m)G n

m
((
n

m
− 1)F +H)

H

( n
m
− 1)F +H

}

∂H
|H→F = π(m)

[
g n
m

(
n

m
F )
m

n
+V n

m
(
n

m
F )
n−m
n

]

Therefore, for supplier i to invest in F also, the investment cost should equal

v= π(m)

[
g n
m

(
n

m
F )
m

n
+V n

m
(
n

m
F )
n−m
n

]
.

By Theorem 1, m is determined by m∗(F ). Hence π(m∗)

[
g n
m∗

( n
m∗
F )m

∗

n
+V n

m∗
(
n

m∗
F )
n−m∗
n

]
is a piece-

wise decreasing, left-continuous function of F . Thus for any given cost v there exists a unique reserve fund

level F that the suppliers can be stable at. In particular, if v = π(m∗)

[
g n
m

( n
m∗
F )m

∗

n
+V n

m∗
(
n

m∗
F )
n−m∗
n

]

for some F , then m∗ coalitions will be formed. �

Allocation Rules.

Proposition A3. Consider a set of players S of size |S|=y, and the rest of the n− y players forming

ordered coalitions KN/S = {K1,K2, ...,Kl}. There exists a set of functions T0, T1, ..., Ty−1 such that

(i) a= 0 is CPNE when U(l)≥ T0(KN/S, S)

(ii) 0<a< y is CPNE when U(l+ i)≤ Ti(KN/S, S) for 0≤ i≤ a− 1 and U(l+ a)≥ Ta(KN/S, S)

(iii) a= y is CPNE when U(l+ i)≤ Ti(KN/S, S), for 0≤ i≤ y− 1.

Proof. For ease of exposition, denote Ku
i the powered-total of all elements in set Ki. That is, if Ki contains

nLi low-endowed supplier and nHi high-endowed supplier, then Ku
i = nLiL

u +nHiH
u.

For single-player game S = {s}, the threshold T0 can be characterized by

T0(K ,{s}) =





maxi{
G1(L)

Lu
Ku
i +Lu

G|Ki|+1(K1
i +L)

} if s is a low-endowed supplier

maxi{
G1(H)

Hu

Ku
i +Hu

G|Ki|+1(K1
i +H)

} if s is a high-endowed supplier

Obviously the proposition holds for y= 1.

Further, suppose the proposition holds for all y < Y . Now consider a set S of size Y and the other players

N/S forming coalitions K = {K1, ...,Kl}. In this scenario, redefine

Vk(FKi) =
Gk(FKi)

Ku
i

.

Then, similar to the proof of Proposition A2, a= 0 is self-enforcing if

U(l)≥= min
Q
{ max
1≤i≤l,s∈K′

j
/Kj

{ V1(s)

Vn′
i
(FK′

i
)
} :

l⋃

j=1

K
′

j/Kj = S and {K ′1, ...,K
′

l } are V-similar} (A26)

and T0(K , S) follows the RHS of (A26). We can also prove that there is no other self-enforcing strategy a> 0

in which every supplier in S is strictly better off under the condition of (A26). First consider u> 1, and any

low-endowed suppliers, which belongs to set K under strategy a= 0 and S under a > 0. Then its expected

profit under a= 0 is π(l)G|K|+1(K1 +L)
Lu

Ku +Lu
≥ π(l+1)G1(L) — the inequality follows the self-enforcing
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condition of any single player. The supplier’s expected profit under a > 0 is given by π(l+ a)G|S|+1(S1 +

L)
Lu

Su +Lu
. By Assumption 1 (a), it can be verified that G1(L)≥G|S|+1(S1 +L)

Lu

Su +Lu
for u≥ 1. Also there

is π(l+1)≥ π(l+a). So π(l)G|K|+1(K1 +L)
Lu

Ku +Lu
≥ π(l+1)G1(L)≥ π(l+a)G|S|+1(S1 +L)

Lu

Su +Lu
. The

low-endowed suppliers are no better off under any a > 0 strategy. Similar can be proved that when u < 1,

G1(H)≥G|S|+1(S1 +H)
H

S1 +H
≥G|S|+1(S1 +H)

Hu

Su +Hu
. Thus high-endowed suppliers are no better off

under any a> 0 strategy. Therefore a= 0 is a CPNE. The same argument carries for any a≤ y− 1, and the

form of Ta follows (A22). Thus the proposition also holds for y= Y . �

Proof of Proposition 9.

(i) Implied by Proposition A3 (i), the proof is similar to Theorem 2 (i).

(ii) max{G1(L)

Lu
,
G1(H)

Hu
}nLL

u +nHH
u

Gn(FN)
= max{G1(L)[nL +nH(H/L)u]

Gn(FN)
,
G1(H)[nH(L/H)u +nH ]

Gn(FN)
}.

Note that
G1(L)[nL +nH(H/L)u]

Gn(FN)
increases in u,

G1(H)[nH(L/H)u +nH ]

Gn(FN)
decreases in u, and

G1(L)[nL +nH(H/L)u]

Gn(FN)
|u=0 <

G1(H)[nH(L/H)u +nH ]

Gn(FN)
|u=0. Therefore there exists a unique uf =

lnG1(L)/G1(H)

lnL/H
at which

G1(L)[nL +nH(H/L)uf ]

Gn(FN)
=

G1(H)[nH(L/H)uf +nH ]

Gn(FN)
. Specifically,

max{G1(L)

Lu
,
G1(H)

Hu
}nLL

u +nHH
u

Gn(FN)
takes the value

G1(H)[nH(L/H)u +nH ]

Gn(FN)
when 0 < u ≤ uf and

G1(L)[nL +nH(H/L)u]

Gn(FN)
when uf ≤ u, and is minimized at u= uf . By (i), grand coalition is more likely to

be achieved as u approaches uf . �

Default Premium on Wholesale Prices.

• For n symmetric suppliers, we can show that Lemma A5 holds true if δ is less than certain threshold.

Consider assembly system with iso-elastic demand, i.e., D = ap−b. Other problems can be proved in

a similar manner. By Proposition 1, the expected profit for any alliance given coalition structure S is

π(S ) =
a

b
(1− 1/b)b(

C̃

1−m/b )1−b, where m is the number of coalitions, and C̃ = nc+
∑m

1 Ḡ|Sk|(FSk)δSk =

nc+
∑m

1 Ḡ|Sk|(FSk)|Sk|δ. The expected profit for a supplier s in alliance k is then

Πs(S ) = π(S )G|Sk|(FSk)
F

FSk
=
a

b
(1− 1/b)b(

C̃

1−m/b )1−bV|Sk|(FSk)F.

For any single supplier s, suppose the rest suppliers form ordered coalitions K = {K1, ...,Kl} where

n1 ≤ n2 ≤ ...≤ nl, and denote the new structure if supplier i joins coalition t as K t = {Ki, ...,Kt∪{s}, ...,Kl}.
Then supplier s will decides between being in dependent, i.e., K0 = {{s},K1, ...,Kl}, and joining coalition

t∗ where

t∗ = arg max
1≤t≤l

{Πs(K
t)}.

Lemma A9. There exists a δ0 > 0 such that Πs(K t) decreases with t and t∗ = 1 when δ≤ δ0.

Proof. We prove the statement for iso-elastic demand D= ap−b. Other kinds of demand can be proved in a

similar fashion. If supplier s join alliance t, then the expected profit is

aF

b
(1−1/b)b(1−l/b)b−1

[
C + δ

l∑

1

Ḡ|Sk|(FSk)nk− δḠ|St|(FSt)nt + δḠ|St+1|(FSt +F )(nt + 1)

]1−b
V|Sk|+1(FSk +F ).
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To prove the lemma is equivalent to showing that the following decreases with n̂:

[
C + δ

l∑

1

Ḡ|Sk|(FSk)nk− δḠn̂(n̂F )n̂+ δḠn̂+1((n̂+ 1)F )(n̂+ 1)

]1−b
Vn̂+1((n̂+ 1)F )

A negative FOC of the above requires that

δΛ1(n̂)≤Λ2(n̂)

where

Λ1(n̂) = (1− b)Vn̂+1((n̂+ 1)F )(Gn̂(n̂F )−Gn̂+1((n̂+ 1)F ) +G
′

n̂(n̂F )n̂−G′n̂+1((n̂+ 1)F )(n̂+ 1)

+V
′

n̂+1((n̂+ 1)F )(

l∑

1

Ḡ|Sk|(FSk)nk− Ḡn̂(n̂F )n̂+ Ḡn̂+1((n̂+ 1)F )(n̂+ 1))

Λ2(n̂) = −V ′n̂+1((n̂+ 1)F )C

and V
′

n̂+1((n̂+ 1)F ) = Vn̂+1((n̂+ 1)F )−Vn̂(n̂F ), G
′

n̂+1((n̂+ 1)F ) =Gn̂+1((n̂+ 1)F )−Gn̂(n̂F ). Therefore the

FOC is negative if δ≤ δ0 = minn̂{Λ2(n̂)/Λ1(n̂) : Λ1(n̂)> 0}. �

When δ is less than δ0, the structure of Lemma A5 holds and

(i) {K1 ∪{s},K2, ...,Kl}, that is, join K1, if
π(K 1)

π(K 0)
≥ V1(F )

Vn1+1((n1 + 1)F )

(ii) {{s},K1,K2, ...,Kl}, that is, be independent, if
π(K 1)

π(K 0)
≤ V1(F )

Vn1+1((n1 + 1)F )
where ordered structure {K1,K2, ...,Kl} represents the strategy for the rest of the players N −{s}.

For y-player games, given that the rest of the n−y players form ordered coalitions K = {K1,K2, ...,Kl},
denote K ∨ y as the water-filling structure K ∗(K , Y ). Then similarly for Proposition A1,

(i) the CPNE satisfies a= 0 if and only if
π((K ∨ y− 1)1)

π((K ∨ y− 1)0)
≥ V1(F )

Vn∗(n∗F )
, where n∗ = n∗(K , y)

(ii) the CPNE satisfies 0<a< y, if and only if

π((K ∨ y− 1)1)

π((K ∨ y− 1)0)
≤ V1(F )

Vn∗(n∗F )
, where n∗ = n∗(K , y)

π((Ii ∪K ∨ y− 1− i)1)

π((Ii ∪K ∨ y− 1− i)0)
≤ V1(F )

Vn∗(n∗F )
, for 1≤ i≤ a− 1, where n∗ = n∗(Ii ∪K , y− i)

π((Ia ∪K ∨ y− 1− a)1)

π((Ia ∪K ∨ y− 1− a)0)
≥ V1(F )

Vn∗(n∗F )
, where n∗ = n∗(Ia ∪K , y− a)

(iii) the CPNE is a= y, if and only if

π((K ∨ y− 1)1)

π((K ∨ y− 1)0)
≤ V1(F )

Vn∗(n∗F )
, where n∗ = n∗(K , y)

π((Ii ∪K ∨ y− 1− i)1)

π((Ii ∪K ∨ y− 1− i)0)
≤ V1(F )

Vn∗(n∗F )
, for 1≤ i≤ y− 1, where n∗ = n∗(Ii ∪K , y− i)

where Ik is the coalition structure with k independent suppliers, i.e., Ik = {P1, ..., Pk} where |Pi| = 1 for

i= 1, ..., k.

Finally, let S (m,N) be an m-partition of N such that −1≤ |Si| − |Sj | ≤ 1 for any i 6= j and Ik represent

a set of k suppliers. Then the CPNE can be characterized similar to Theorem 1:

(i) form grand coalition (m∗ = 1) if
π(N)

π({N − I1}0)
≥ V1(F )

Vn(nF )
;
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(ii) form independent structure (m∗ = n) if
π(S 1(m,N − I1))

π(S 0(m,N − I1))
<

V1(F )

Vdn/me(dn/meF )
for any 1≤m≤ n− 1;

(iii) form m∗ coalitions where 1 < m∗ < n, if
π(S 1(m,N − I1))

π(S 0(m,N − I1))
<

V1(F )

Vdn/me(dn/meF )
for any 1 ≤ m ≤

m∗− 1, and
π(S 1(m∗,N − I1))

π(S 0(m∗,N − I1))
≥ V1(F )

Vdn/m∗e(dn/m∗eF )
.

This leads to the use of refined Risk Adjusted Stability Factor as follows

(i) grand coalition is stable if RASF1 =
π(N)

π({N/{s}}0)
− V1(F )

Vn(nF )
≥ 0;

(ii) independent structure is stable if RASFm =
π(S 0(m,N/{s}))
π(S 1(m,N/{s})) −

V1(F )

Vdn/me(dn/meF )
< 0 for any 1 ≤

m≤ n− 1;

(iii) m∗ coalitions, where 1<m∗ <n, will be formed if RASFm =
π(S 0(m,N/{s}))
π(S 1(m,N/{s})) −

V1(F )

Vdn/me(dn/meF )
<

0 for any 1≤m≤m∗− 1, and RASFm∗ =
π(S 0(m∗,N/{s}))
π(S 1(m∗,N/{s})) −

V1(F )

Vdn/m∗e(dn/m∗eF )
≥ 0,

where S (m,N) is the m-partition of N such that −1 ≤ |Si| − |Sj | ≤ 1 for any i 6= j and Ik represent a

set of k suppliers, and for any single supplier s and ordered coalition structure K = {K1, ...,Kl}, K t =

{Ki, ...,Kt ∪{s}, ...,Kl} and K 0 = {{s},K1, ...,Kl}.
•When δ is great than the threshold, Lemma A9 may not hold. In face, the SOC of the expected profit is

negative. Then instead of always joining the smallest coalition, there might exist a “preferred” coalition size

n∗ that a supplier would join the alliance whose member is most close to n∗, whereas n∗ = 1 in the special

case when δ is less than the threshold. This generally implies that there will be more incentive for suppliers

to join form alliances.
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