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The linear programming approach to approximate dynamic programming has received considerable atten-

tion in the recent network revenue management literature. A major challenge of the approach lies in solving

the resulting approximate linear programs (ALPs), which often have a huge number of constraints and/or

variables. We show that the ALPs can be dramatically reduced in size for both affine and separable piece-

wise linear approximations to network revenue management problems, under both independent and discrete

choice models of demand. Our key result is the equivalence between each ALP and a corresponding reduced

program, which is more compact in size and admits an intuitive probabilistic interpretation. For the affine

approximation to network revenue management under an independent demand model, we recover an equiva-

lence result known in the literature, but provide an alternative proof. Our other equivalence results are new.

We test the numerical performance of solving the reduced programs directly using off-the-shelf commercial

solvers on a set of test instances taken from the literature.
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1. Introduction

Network revenue management (NRM) problems can be broadly viewed as sequential decision

making problems under uncertainty and are often formulated as dynamic programs (Gallego and

van Ryzin 1997, Talluri and van Ryzin 1998). In the canonical airline application of NRM, the state

of the system is the vector of remaining resources, where each resource corresponds to a flight leg.

Since practical airline NRM problems usually involve a large number of flight legs, the dynamic

programming formulation suffers from the well-known “curse of dimensionality.” Dealing with this

curse of dimensionality through approximations and heuristic control policies has been the focus

of much of the research in NRM over the last two decades (Talluri and van Ryzin 1998, Bertsimas

and Popescu 2003).

The seminal paper of Adelman (2007) introduces a solution framework based on equivalent linear

programming formulations of the corresponding dynamic programs. His work builds on the stream

of literature on linear programming-based approximate dynamic programming (LP-based ADP)

* Authors are listed alphabetically. Both authors contributed equally.
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(Schweitzer and Seidmann 1985, de Farias and Van Roy 2003, de Farias and Van Roy 2004). The

central idea is to approximate the value function with linearly weighted basis functions. Adelman

(2007) illustrates his idea by implementing a functional approximation where the value function is

approximated by an affine function of the state (resource) vector. The resulting approximate linear

programs (ALPs) have a relatively small number of variables but a huge number of constraints,

which grow exponentially in the number of resources and the number of products. He shows that

the affine approximation produces an upper bound on total expected revenue, which is tighter than

the upper bound from the widely used deterministic linear program (DLP) (Talluri and van Ryzin

1998, Cooper 2002). The coefficients of each resource in the affine approximation can be interpreted

as time-dependent bid-prices, that is, per-unit values attached to each resource in each period. A

bid-price control accepts a customer request if the revenue earned exceeds the total value of the

resources consumed. Adelman (2007) shows that the dynamic bid-price control policy is superior

to the static bid-price policies obtained using DLP, even when the latter is frequently resolved.

Zhang and Adelman (2009) study an extension to NRM with discrete choice models of customer

demand (Talluri and van Ryzin 2004, Gallego et al. 2004, Zhang and Cooper 2005, Liu and van

Ryzin 2008).

Adelman’s work inspired the development of stronger functional approximations, whose corre-

sponding ALPs yields tighter upper bounds than the affine approximation. Even though tighter

bounds do not guarantee stronger heuristic policies, numerical studies have found positive corre-

lations between the two (Talluri 2008). A powerful and intuitively appealing functional approxi-

mation is the separable piecewise linear approximation, where the basis functions are separable by

resource. Separable piecewise linear approximations have been used in many applications; see, e.g.,

Bertsekas and Tsitsiklis (1996) and Powell (2007). For NRM, this approximation has recently been

used by Farias and Van Roy (2007) and Meissner and Strauss (2012). Instead of a time-dependent

bid-price for each resource from the affine approximation, the separable piecewise linear approxi-

mation leads to bid-prices that depend on both time and resource levels. Naturally, the resulting

ALPs are much larger in comparison to the ALPs from the affine approximation, and therefore

also tend to be harder to solve.

Both the affine and the separable piecewise linear approximations lead to large-scale linear pro-

grams that are computationally challenging, even with powerful modern linear programming tools.

For example, Table 6 in Meissner and Strauss (2012) shows that solving a small NRM problem with

separable piecewise linear approximation can take more than 10 hours. Two standard approaches

to tackling these computational challenges are column generation (Adelman 2007, Zhang and Adel-

man 2009, Meissner and Strauss 2012) and constraint sampling (de Farias and Van Roy 2004,
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Farias and Van Roy 2007). The fundamental idea in both approaches is to successively solve smaller

versions of the ALPs, because brute force solutions are computationally intractable.

In this paper, we show that the ALPs under affine and separable piecewise linear approximations

for NRM can be reduced to linear programs that are much smaller in size, for both independent and

discrete choice models of demand. Under the independent demand model, the reduced programs

grow linearly in the numbers of resources and products. However, under the discrete choice model,

the reduced programs for both affine and separable piecewise linear approximations grow linearly

in the number of resources, but still grow exponentially in the number of products. Hence, the

reduction breaks the “curse of dimensionality” in the state space, but not in the action space. On an

intuitive level, this is due to the fact that products cannot be tracked independently when customers

choose among them, while they can be tracked independently when each arriving customer requests

a specific product.

Our analytical framework for deriving the main results has its roots in the Dantzig-Wolfe decom-

position principle (Dantzig and Wolfe 1960, 1961). Essentially, we show that the ALPs under

consideration are equivalent to the Dantzig-Wolfe reformulations of some smaller linear programs,

which we call the reduced programs. In the classical Dantzig-Wolfe decomposition, a linear program

is “expanded” by considering the explicit representation of the polyhedron defined by a subset

of the constraints. The development in our paper is quite different, in that the starting point is

an ALP that corresponds to an expanded formulation. To construct a reduced formulation, the

question is then whether and how we can recover constraints whose expansion results in the ALP.

We rely on the structure of the ALP’s column generation subproblem to generate these constraints.

An important concept in dynamic programming, and in approximate dynamic programming

by extension, is the notion of state-action pairs and their corresponding probabilities (Puterman

1994). In particular, the decision variables in ALPs correspond to state-action pairs, and their

values can be interpreted as approximate state-action probabilities. This correspondence plays an

important role in our theoretical development. To show that the Dantzig-Wolfe reformulations of

some reduced programs can be directly related to the ALPs, we need to show that the columns in

the reformulations can be properly labeled by state-action pairs. This requirement entails showing

that the underlying polyhedra have integer extreme points. We show that the required integrality

property holds for all cases considered in the paper.

Several authors consider compact representations for ALPs in the literature. Farias and Van Roy

(2007) consider a relaxed ALP (called rALP), which is shown to be equivalent to the original ALP

under the affine approximation for NRM with independent demand. For the separable piecewise
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linear approximation, rALP provides a feasible solution to the original ALP. They use numerical

experiments to demonstrate the solution quality of rALP. Unlike the reductions considered in this

paper, rALP formulations are still exponential in size for NRM under the independent demand

model. More recently, Tong and Topaloglu (2011) show great promise, both theoretically and

computationally, in reducing ALPs from affine approximations under the independent demand

model. They prove that the affine ALP in Adelman (2007) can be reduced to a more compact

linear program, which grows linearly, rather than exponentially, in model primitives (number of

resources, number of products, etc.). Via numerical experiments, they illustrate that the reduced

program can be solved orders of magnitude faster than the original ALP. The significant reduction

in computation times is not unexpected given the dramatic reduction of program size. The reduction

proof in Tong and Topaloglu (2011) relates the dual of the affine ALP to a network flow problem. For

the affine ALP with independent demand, our reduced program coincides with the one proposed in

Tong and Topaloglu (2011), though we offer an alternative framework to prove the result. Neither

Farias and Van Roy (2007) nor Tong and Topaloglu (2011) consider NRM with a discrete choice

model of customer demand.

The reduced programs admit an intuitive interpretation. For the separable piecewise linear

approximation, the decision variables can be interpreted as marginal state-action probabilities, the

dynamics of which are tracked by the constraints. This should be contrasted with the full equiva-

lent linear programming formulation of the dynamic programming formulation, which tracks the

joint probabilities of state-action pairs, and the affine ALP, which tracks expectations.

The ALP reductions introduced in this paper open up the possibility to develop specialized

algorithms based on the more compact problem representations. This is precisely the approach

taken in Vossen and Zhang (2014). They show that the reduced programs for affine ALPs for both

discrete choice and independent demand models can be efficiently solved by a dynamic aggrega-

tion/disaggregation procedure. However, their work does not consider separable piecewise linear

approximations. Our numerical experiments suggest that the reduced programs for separable piece-

wise linear approximations can be solved much faster than existing column generation approaches

proposed in the literature. This result is not unexpected, because the reduced programs are much

smaller in size.

Lagrangian relaxation is considered a distinctive approach from the LP-based ADP. For a class of

infinite horizon stochastic dynamic programs, Adelman and Mersereau (2008) compare the bounds

and policy performance of Lagrangian relaxation and LP-based ADP. Topaloglu (2009) proposes

a clever Lagrangian relaxation approach for NRM with independent demand, which relaxes the
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requirement that a customer traveling multiple legs has to be accepted on all legs in the itinerary.

He introduces a subgradient approach to solve the relaxation and reports encouraging bounds

and policy performance from the approach. Kunnumkal and Talluri (2011) show that Lagrangian

relaxation and separable piecewise linear approximation are equivalent in that they produce the

same upper bound.

The reduced programs for separable piecewise linear approximation, both with and without

choice, can be used as a starting point to derive a Lagrangian relaxation. For the independent

demand case, relaxing a linking constraint in the reduced formulation recovers the Lagrangian

relaxation in Topaloglu (2009). The equivalence result established in Kunnumkal and Talluri (2011)

is immediate since the reduced program is a linear program. A Lagrangian relaxation in the choice

case can also be derived following a similar approach. However, the number of linking constraints

relaxed in that setting is exponential in the number of products. Hence the number of corresponding

Lagrangian multipliers is also exponential in the number of products (Kunnumkal and Talluri

2014).

The equivalence result in Kunnumkal and Talluri (2011) establishes the subgradient algorithm

proposed in Topaloglu (2009) as an alternative approach to solving the separable piecewise linear

approximation for NRM with independent demand. Topaloglu (2009) shows the efficacy of the

approach in an extensive numerical study. More recently, Kunnumkal and Talluri (2011) observe in

numerical tests that the subgradient algorithm is much faster than solving the separable piecewise

linear ALP using a column generation approach. In our numerical study, we solve the reduced

programs directly on the test instances taken from Topaloglu (2009). We show that solving the

reduced programs leads to tighter upper bounds on total expected revenues. We conjecture that

this is caused by the fact that the subgradient algorithm used in Topaloglu (2009) can terminate

prematurely, since it relies on an ad-hoc stopping criterion. On the other hand, both upper and lower

bounds on the objective values can be constructed when solving the reduced programs directly.

Hence, a solution can be obtained for any desired optimality tolerance. Our implementation uses

the default interior point solver in CPLEX and therefore requires minimal custom coding and

algorithm tuning.

The remainder of the paper is organized as follows. Section 2 formulates the NRM problem and

introduces some technical preliminaries. Section 3 introduces a general framework for reducing the

size of multi-stage linear programs. Sections 4 and 5 consider reductions for affine and separable

piecewise linear approximations, respectively. Section 6 reports numerical results and Section 7

concludes. An appendix at the end contains a summary of notation and additional proofs.
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2. Model Formulation and Preliminaries

For ease of exposition, we use airline terminology throughout the paper. In particular, we have

a set of flight legs that can be used to serve customers who arrive over time. The time horizon

is finite and discrete, and at the start of each time period we need to decide which itinerary-fare

combinations (products) to offer to the customers. Customers review the offered products and

purchase at most one of them. The overall objective is to determine which products to offer so as

to maximize total expected revenue.

To be more precise, we consider a flight network that consists of legs in the set I = {1, . . . , I},

where I is the number of legs. The capacity of each leg is given by the vector c= (c1, . . . , cI), where

ci is the capacity of leg i. The products that are offered belong to the set J = {1, . . . , J}, where J

is the number of products and the fare component of product j is denoted fj. Products can differ

in the legs they use, which is expressed using a consumption matrix. The consumption matrix is

an (I × J)-matrix A ≡ (aij), where the entry aij ∈ {0,1} represents whether leg i is required by

product j. We use aj to represent the j-th column of A, which is the incidence vector for product

j, and Ij = {i∈ I : aij = 1} to represent the set of legs used by product j. The time periods belong

to the set T = {1, . . . , T} and time periods are counted forward, so period T corresponds to the last

period in the horizon. To simplify notation, we reserve the symbols i, j, and t for legs, products,

and time, and omit writing the corresponding index sets.

In each period t, there is one customer arrival with probability ρt, and no customer arrival with

probability 1−ρt. We consider different versions of the problem, both with discrete choice and inde-

pendent demand models of customer behavior (Liu and van Ryzin 2008). When accommodating

customer choice behavior, we assume that the arriving customer chooses product j with probabil-

ity Pt,j(u), where u ∈ U ≡ {0,1}J corresponds to the characteristic vector of the set of products

currently being offered; with slight abuse of terminology, we sometimes refer to this vector as an

offer set in the remainder of this paper. Under an independent demand model, we assume that

each arriving customer belongs to a customer class requesting a specific product. In other words,

a class-j customer will only request product j, and we use λt,j for the probability that an arriving

customer requests product j during period t. Note that the latter can be viewed as a special case

of the discrete choice model where

Pt,j(u) =
λt,j
ρt
uj, ∀t, j,u∈ U . (1)

The resulting problem has been studied in a number of papers in the recent years (Gallego

et al. 2004, Liu and van Ryzin 2008), and can be cast as a finite-horizon discrete-time Markov
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decision process. The state in this MDP corresponds to an I-dimensional vector x that specifies

the remaining capacity on each of the flight legs at the beginning of a period, and we require

x ∈X ≡ {x ∈ZI+ : x≤ c}. A product can only be offered when there is enough capacity remaining

on each of the legs in its itinerary. For any state x ∈X , we define its feasible offer sets as U(x) =

{u∈ U : ajuj ≤ x ∀j}. These represent the action space in the MDP, that is, in each state we select

exactly one offer set. Now, let vt(x) denote the total expected revenue over periods t, . . . , T starting

from state x at the beginning of period t. The optimality equations are given by

vt(x) = max
u∈U(x)

{∑
j

ρtPt,j(u)[fj + vt+1(x−aj)] +

(
1− ρt

∑
j

Pt,j(u)

)
vt+1(x)

}
, ∀t,x∈X ,

= max
u∈U(x)

{∑
j

ρtPt,j(u)
[
fj −

(
vt+1(x)− vt+1(x−aj)

)]
+ vt+1(x)

}
, ∀t,x∈X , (2)

where the boundary conditions are vτ+1(x) = 0 for all x∈X .

Solving (2) is computationally challenging due to the state space explosion. In addition, opti-

mization over u for a given state can be difficult for general choice probabilities. In this paper, we

consider LP-based ADP approaches to solving the problem (Adelman 2007, Zhang and Adelman

2009).

2.1. Approximate Dynamic Programming

Following Adelman (2007), we start with the equivalent linear programming formulation for (2).

Using decision variables vt(x) for all t,x ∈X , and defining the set of feasible state-action pairs as

S = {(x,u)∈X ×U : u∈ U(x)} yields the following formulation:

(P) min
{vt(·)}∀t

v1(c)

s.t. vt(x)≥
∑
j

ρtPt,j(u)
[
fj −

(
vt+1(x)− vt+1(x−aj)

)]
+ vt+1(x), ∀t, (x,u)∈ S.

Its dual equals

(D) max
p

∑
t,(x,u)∈S

(∑
j

ρtPt,j(u)fj

)
pt,x,u

s.t.
∑

u∈U(x)

pt,x,u =


1{x= c}, if t= 1,∑
u∈U(x)

pt−1,x,u−
∑

u∈U(x),j

ρt−1Pt−1,j(u)
(
pt−1,x,u− pt−1,x+aj ,u

)
, if t > 1,

∀t,x∈X , (3)

p ≥ 0.

In the above, 1{·} is the indicator function. We also assume pt,x,u = 0 if (x,u) 6∈ S, to simplify the

presentation of constraint (3). The decision variables in the dual formulation can be interpreted as
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state-action probabilities; that is, pt,x,u equals the fraction of time we reach state x at the beginning

of period t and offer the set of products corresponding to u during the period. Thus, the term∑
u∈U(x) pt,x,u can be interpreted as the probability of reaching state x at the beginning of period

t, and constraints (3) can be interpreted as flow balance constraints that ensure the evolution of

the state distribution is maintained correctly over time.

In and of itself, however, the formulation as a linear program does little to improve tractability:

the number of variables and constraints in (P) increases exponentially in the number of legs I

and the number of products J , so brute-force solution of (P) is as difficult as solving the dynamic

programming formulation (2) directly. To achieve tractability, it is common to resort to approxi-

mately solving (P). Typically, this is done by representing the value function vt(x) by a collection

of weighted basis functions. Consider a set of basis functions φb :X →R for b∈B, where B is some

index set, and take

vt(x)≈ θt +
∑
b∈B

Vt,bφb(x), ∀t,x∈X , (4)

where Vt,b is a parameter that weighs basis function φb(·) at time t, and θt is a constant offset.

While θt corresponds to a constant basis function φ∅(x) = 1 for all x ∈ X , we include it here for

ease of exposition in later sections. Substituting (4) into (P) yields an optimization problem over

the parameters θt and Vt,b, and leads to the following linear program:

(P)φ

min
θ,V

θ1 +
∑
b∈B

V1,bφb(c)

s.t. θt− θt+1 +
∑
b∈B

(Vt,b−Vt+1,b)φb(x) +
∑
b∈B,j

ρtPt,j(u)Vt+1,b

(
φb(x)−φb(x−aj)

)
≥
∑
j

ρtPt,j(u)fj

∀t, (x,u)∈ S.

Its dual equals

(D)φ max
p

∑
t,(x,u)∈S

(∑
j

ρtPt,j(u)fj

)
pt,x,u

s.t.
∑

(x,u)∈S

φb(x)pt,x,u =


φb(c), if t= 1,∑
(x,u)∈S

φb(x)pt−1,x,u−∑
(x,u)∈S,j

ρt−1Pt−1,j(u)
(
φb(x)−φb(x−aj)

)
pt−1,x,u, if t > 1,

∀t, b∈B, (5)∑
(x,u)∈S

pt,x,u =


1, if t= 1,∑
(x,u)∈S

pt−1,x,u, if t > 1, ∀t, (6)
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p ≥ 0.

Note that constraint (6) can be simplified to∑
(x,u)∈S

pt,x,u = 1 ∀t. (7)

The decision variables pt,x,u in the dual formulation (D)φ can be interpreted as approximate state-

action probabilities. The probabilities are approximate since they may not be the same as those

corresponding to an optimal policy. We refer to Adelman (2007) for further discussion. The term∑
(x,u)∈S φb(x)pt,x,u in (5) can be interpreted as the expected value of the basis functions at the

beginning of period t. Thus, whereas the flow balance constraints in (D) track the evolution of the

state distribution, the flow balance constraints in (D)φ only require that the expectations of the

basis functions with respect to the state distribution are maintained over time.

In comparison to (D), the dual problem (D)φ has relatively few constraints when a moderate

number of basis functions are used, though the number of decision variables is still exponential in

both the number of legs and the number of products. This suggests a column generation procedure

(Desrosiers and Lübbecke 2005) to solve the resulting problem, which uses only a small subset

of the decision variables and adds more variables only when needed. This approach has received

considerable attention in the NRM literature (Adelman 2007, Zhang and Adelman 2009, Meissner

and Strauss 2012).

While the approximation (4) allows many potential approximation alternatives, in the remainder

of this paper we focus on two specific approximation architectures: the affine approximation and

the separable piecewise linear approximation. The affine approximation is given by

vt(x)≈ θt +
∑
i

Vt,ixi, ∀t,x∈X , (8)

while the separable piecewise linear approximation is given by

vt(x)≈ θt +
∑
i

ci∑
k=1

Vt,i,k1{xi ≥ k}, ∀t,x∈X . (9)

In light of our previous discussion, we emphasize their underlying interpretation. Because the affine

approximation uses basis functions φi(x) = xi for all i, it ensures that the expected number of

remaining units for each leg is enforced consistently over time. The separable piecewise linear

approximation, on the other hand, uses basis functions φi,k(x) = 1{xi ≥ k} for all i, k = 1, . . . , ci

and therefore tracks the probability that the remaining capacity of leg i is at least k. Thus, approx-

imation (9) enforces time consistency on the marginal distributions of capacity remaining for each

leg.
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Both approximations have been studied in connection with the NRM problem (Adelman 2007,

Zhang and Adelman 2009, Farias and Van Roy 2007, Meissner and Strauss 2012), and the heuristic

policies from these approximations are known to give strong revenue performance. Approximation

(9), in particular, has also been a popular approximation architecture in the approximate dynamic

programming literature in other contexts (Bertsekas and Tsitsiklis 1996, Powell 2007).

3. General Framework

Before proceeding to the main results in the following sections, we discuss the framework that we

use to derive these results. Our approach to constructing reduced formulations has its basis in the

Dantzig-Wolfe decomposition principle. We start with a brief review of Dantzig-Wolfe decomposi-

tion, applying the setup introduced in Chapter 6 of Bertsimas and Tsitsiklis (1997) to a general

multi-stage linear programming problem. We then introduce two lemmas that relate multi-stage

linear programs to the Dantzig-Wolfe reformulations of some more compact linear programs. These

lemmas are central to the reductions of ALPs in Sections 4 and 5.

Consider a general multi-stage linear programming formulation

(LP) max
∑
t

cTt wt

s.t.
∑
t

Dtwt = d,

wt ∈ P, ∀t,

where ct is a K-vector, d is an L-vector, Dt is an (L×K) matrix, and P = {w ∈RK
+ : Bw ≤ b}

is a bounded polyhedron. To relate our framework to the ALPs we consider later in the paper, we

assume that the time index t runs from 1 to T and restrict P to be independent of t. Our analysis

also applies when P depends on t.

Let E be the index set of the extreme points of P; that is, the set of extreme points of P can be

written as {we ∈P : e∈ E}. The Dantzig-Wolfe decomposition principle (Dantzig and Wolfe 1960,

1961) states that (LP) is equivalent to

(MP) max
∑
t,e∈E

µt,ec
T
t w

e

s.t.
∑
t,e∈E

µt,eDtw
e = d, (10)∑

e∈E

µt,e = 1, ∀t, (11)

µt,e ≥ 0, ∀t, e∈ E .

The formulation (MP) is often called the master problem and contains a column for each extreme

point of P in each period. Direct solution methods for (MP) are usually intractable. Instead, (MP)



11

is often solved using a column generation procedure. This procedure maintains a restricted master

problem (RMP), which works with a small subset
⋃
t E t of the columns in the master problem

with E t ⊆E for each t. Let (π,φ) be the dual variables corresponding to (10) and (11) in (RMP).

A column generation subproblem is used to determine the columns with the highest reduced cost.

For a given t, the column generation subproblem equals

(CG)t ϕt = max (cTt −πTDt)wt−φt
s.t. wt ∈ P.

If the reduced cost ϕt ≤ 0 for all t, the solution to (RMP) is optimal to (MP) as well. Otherwise,

we can add columns with positive reduced costs to (RMP) based on the solution to the column

generation subproblems, and continue by re-optimizing (RMP).

The Dantzig-Wolfe decomposition discussed above originates from a compact formulation (LP),

which is reformulated to a master problem (MP) with a huge number of columns. Usually the

formulation aims at taking advantage of some special structure in the polyhedron P that allows the

column generation subproblems (CG)t to be solved efficiently. In the remainder of this section we

take a different approach, in that our starting point is a large scale multi-stage linear program. In

subsequent sections, these large scale multi-stage linear programs correspond to ALPs that result

from the LP-based ADP approach. The ALPs have a huge number of columns but a moderate

number of constraints (corresponding to the basis functions), with a multi-stage structure that is

similar to (MP). The question we try to resolve is whether it is possible to construct equivalent, but

more compact, formulations for the ALPs by applying the Dantzig-Wolfe decomposition principle.

That is, we are interested in relating the ALPs to Dantzig-Wolfe reformulations of some more

compact linear programs. We use the structure of the column generation subproblems to evaluate

when and under what conditions we can construct compact formulations whose Dantzig-Wolfe

reformulations are equivalent to the ALPs.

To explain our approach, consider a generic multi-stage linear program:

(MP′) max
∑
t,e∈E′

µt,ec
′
t,e

s.t.
∑
t,e∈E′

µt,ed
′
t,e = d, (12)∑

e∈E′
µt,e = 1, ∀t, (13)

µt,e ≥ 0, ∀t, e∈ E ′,

where c′t,e is a scalar, d′t,e is an L-vector for all t, e, and E ′ is an index set of columns for each t. An

implicit assumption is that E ′ is huge. We also emphasize that, in contrast to (MP), the param-

eters c′t,e and d′t,e are not expressed relative to the extreme points of an underlying polyhedron.
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Nevertheless, a column generation procedure can be used to solve (MP′) by successively solving a

restricted master problem (RMP′), which contains selected columns in (MP′). Let (π,φ) be the

dual variables corresponding to (12) and (13) in (RMP′). The column generation subproblem for

each t is given by

(CG′)t max
e∈E′

c′t,e−πTd′t,e−φt.

While (CG′)t is posed as an oracle subproblem that requires enumeration of all e ∈ E ′, there is

often an underlying structure that enables a more efficient solution procedure. Specifically, suppose

that we can formulate (CG′)t as an equivalent linear program

(RCG)t max (ĉTt −πT D̂t)wt−φt
s.t. wt ∈ P̂,

where P̂ = {w ∈Rk
+ : B̂w ≤ b̂} is a bounded polyhedron, ĉt is a K-vector, and D̂t is an (L×K)

matrix. Our central thesis is that we can construct a compact representation of (MP′) whenever

(CG′)t and (RCG)t are equivalent.

Lemma 1. Let π and φ be any L-vector and T -vector, respectively. If for each t,

(i) For any e∈ E ′, there exists an wt ∈ P̂ such that c′t,e = ĉTt wt and d′t,e = D̂twt, and

(ii) For each extreme point wt of P̂, there exists an e∈ E ′ such that c′t,e = ĉTt wt and d′t,e = D̂twt,

then the linear program (MP′) is equivalent to

(LP′) max
∑
t

ĉTt wt

s.t.
∑
t

D̂twt = d,

wt ∈ P̂, ∀t.

Proof. To establish this result, we first verify that (MP′) is equivalent to the formulation

(MP′′) max
∑
t,e∈Ê

µt,eĉ
T
t w

e

s.t.
∑
t,e∈Ê

µt,eD̂tw
e = d,∑

e∈E

µt,e = 1, ∀t,

µt,e ≥ 0, ∀t, e∈ Ê ,

where the set {we : e ∈ Ê} corresponds to the extreme points of P̂. Condition (i) guarantees that

any solution to (MP′) has a corresponding solution (with the same objective value) to (MP′′),
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while condition (ii) guarantees that any solution to (MP′′) gives a solution to (MP′). Then, the

Dantzig-Wolfe decomposition principle states that (MP′′) is equivalent to (LP′).

Lemma 1 provides sufficient conditions to constructing a reduced formulation. In certain settings,

however, these conditions can be overly restrictive. In particular, it can be difficult to establish

condition (ii) for any dual vector π and all extreme points. Therefore, we also consider a weaker

notion of equivalence between linear programs. We say two linear programs are weakly equivalent

if their optimal solutions intersect; that is, there exists an optimal solution in one that is feasible

in the other, and vice versa. Note that weakly equivalent linear programs yield the same optimal

solution value. This definition of weak equivalence is related to a similar notion considered in

Tardella (1990). Our main result is established in the following lemma.

Lemma 2. The linear program (MP′) is weakly equivalent to the linear program (LP′) if the

following conditions hold for any t:

(i) For any e∈ E ′, there exists an wt ∈ P̂ such that c′t,e = ĉTt wt and d′t,e = D̂twt,

(ii) There exists an optimal solution (π,φ) to the dual of (LP′) such that a set of linear inequal-

ities πTG≤ g holds, and

(iii) For any π such that πTG ≤ g, there exists an optimal solution wt to (RCG)t such that

c′t,e = ĉTt wt and d′t,e = D̂twt for some e∈ E ′.

Proof. We first show that (MP′) is weakly equivalent to the formulation (MP′′). Condition (i)

guarantees that there exists an optimal solution to (MP′) that has a corresponding solution (with

the same objective value) to (MP′′) (in fact, this will hold for any solution).

To establish that there exists an optimal solution to (MP′′) that has a corresponding feasible

solution to (MP′), we use conditions (ii) and (iii). In particular, assume that we solve (MP′′)

using the column generation procedure outlined before. The column generation subproblem equals

(RCG)t, where we can assume (or impose) πTG≤ g due to condition (ii). Condition (iii) then guar-

antees that we can only add columns during the procedure that will have a corresponding column

in (MP′). Thus, the procedure will terminate with an optimal solution that has a corresponding

solution to (MP′).

Finally, the Dantzig-Wolfe decomposition principle states that (MP′′) is equivalent to (LP′).

The main difference between Lemmas 1 and 2 is that a set of inequalities πTG≤ g is required in

Lemma 2 for an optimal solution (π,φ) to the dual of (LP′). Such restrictions are commonly called

dual optimal inequalities (Ben Amor et al. 2006) in the literature, and have been used to improve

convergence of column generation procedures. We emphasize that the dual optimal inequalities are

imposed on the dual of (LP′), which is the reduced program. This is often quite convenient, as
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establishing the dual optimal inequalities can be much easier for the reduced program (LP′) than

for the full program (MP′).

In the next two sections, we apply this framework to the ALP dual programs for NRM that result

from applying the affine and separable piecewise linear approximations. In Section 4, we apply

Lemma 1 to establish the reduced programs for affine approximations to NRM with independent

or discrete choice models of demand. Section 5 applies Lemma 2 to establish the reduced programs

for separable piecewise linear approximations. Since Lemma 2 requires dual optimal inequalities,

we show how such inequalities can be established in the context of separable piecewise linear

approximations for NRM.

4. Affine Approximations

In this section, we consider ALPs that result from the affine approximation (8), and show that

Lemma 1 can be used to construct reduced formulations for both the independent and discrete

choice models of demand.

4.1. Independent Demand Models

Substituting (8) into (D)φ and using (1) yields the dual program

(D)A,I max
p

∑
t,(x,u)∈S

(∑
j

λt,jfjuj

)
pt,x,u

s.t.
∑

(x,u)∈S

xipt,x,u =


ci, if t= 1,∑
(x,u)∈S

xipt−1,x,u−
∑

(x,u)∈S,j

λt−1,jaijujpt−1,x,u, if t > 1, ∀t, i, (14)∑
(x,u)∈S

pt,x,u = 1, ∀t, (15)

p ≥ 0.

Adelman (2007) proposes a column generation procedure to solve (D)A,I . Suppose we have an

optimal dual solution (V, θ) to a restricted master problem that only contains a subset of the

columns in (D)A,I . For each t, the column generation subproblem is given by

(CG)A,It max
(x,u)∈S

∑
j

λt,jfjuj −
∑
i

Vt,ixi−
∑
i

Vt+1,i

(∑
j

λt,jaijuj −xi

)
− θt.

Adelman (2007) solves the column generation subproblem (CG)A,It as an integer program. Our

objective however is to construct a reduced formulation that is equivalent to (D)A,I by applying

Lemma 1, which requires that we formulate the subproblems as linear programs. To that end, we

consider the linear programming relaxation of (CG)A,It and show that the integrality restrictions

are redundant. We obtain the linear programming relaxation of (CG)A,It using decision variables
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r ∈RI
+ and q ∈RJ

+, with r a continuous relaxation of x and q a continuous relaxation of u. The

resulting formulation is given by

(RCG)A,It max
r,q

∑
j

λt,jfjqj −
∑
i

Vt,iri−
∑
i

Vt+1,i

(∑
j

λt,jaijqj − ri

)
− θt

s.t. 0 ≤ qj ≤ 1, ∀j, (16)

0 ≤ ri ≤ ci, ∀i, (17)

qj ≤ ri, ∀i, j : aij = 1. (18)

Here, constraints (16) and (17) are simple bounds and constraint (18) follows from the restriction

that products can only be offered if sufficient resources are available.

Lemma 3. The polyhedron QA,I = {(r,q)∈RI+J
+ : (16), (17), (18)} is integral.

Proof. Note that the constraints in QA,I exhibit “dual network structure,” which means that

each contributes a row with coefficients of 0, except for at most one +1, and at most one −1. As

a result, the constraint matrix is totally unimodular (Wolsey 1998) and QA,I has integer extreme

points.

In the following, we check that conditions (i) and (ii) in Lemma 1 are satisfied. According to

Lemma 1, (D)A,I is then equivalent to the reduced formulation

(D-R)A,I max
{rt,qt}∀t

∑
t,j

λt,jfjqt,j

s.t. rt,i =

{
ci, if t= 1,
rt−1,i−

∑
j λt−1,jaijuj, if t > 1,

∀t, i, (19)

qt,j ≤ rt,i, ∀t, i, j : aij = 1, (20)

0≤ qt,j ≤ 1, ∀t, j. (21)

Note that constraint (17) is redundant in the reduced formulation.

To illustrate the connection with Lemma 1, we note that every element e in the index set

of columns in E ′ in (MP’) corresponds to a state-action pair (x,u) ∈ S in (D)A,I . Thus, c′t,e =∑
j λt,jfjuj when e corresponds to (x,u)∈ S. In (MP′), d′t,e is a vector of dimension T × I. When

e corresponds to (x,u) ∈ S, the (t, i)-th element of this vector equals xi, and (t+ 1, i)-th element

equals
∑

j λt,jaijuj − xi. All other elements equal 0. Problem (RCG)t corresponds to (RCG)A,It ,

with ĉt a vector of dimension I + J and B̂t a matrix with TI rows and I + J columns. The i-th

element in ĉt equals 0 for all i, while the (I+j)-th element in ĉt equals λt,jfj for all j. In the matrix

B̂t, the element in row (t, i) and column i equals 1 and the element in row (t+ 1, i) and column i

equals −1. An element in row (t+ 1, i) and column I + j equals λt,jaij. All other elements in B̂t

equal 0.
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For fixed t, Condition (i) in Lemma 1 therefore requires that for every (x,u)∈ S, there exists an

(r,q)∈QA,I such that ∑
j

λt,jfjuj =
∑
j

λt,jfjqj, (22)

xi = ri, ∀i, (23)∑
j

λt,jaijuj −xi =
∑
j

λt,jaijqj − ri, ∀i. (24)

Note that we obtain (22)–(24) by equating the terms corresponding to each individual dual variable

in (CG)A,It and (RCG)A,It , as well as equating the terms that do not involve a dual variable.

In particular, (23) follows by equating terms for Vt,i, while (24) follows by equating terms for

Vt+1,i. This yields a convenient way to ensure that columns in the Dantzig-Wolfe reformulation of

(D-R)A,I has a corresponding individual column in (D)A,I , and vice versa. Equations (22)–(24)

are verified by letting ri = xi for all i and qj = uj for all j and observing that (r,q)∈QA,I .

Condition (ii) in Lemma 1 requires that for every extreme point (r,q) of QA,I , there exists a

state-action pair (x,u)∈ S such that (22)–(24) are satisfied. Because every extreme point of QA,I

is integer according to Lemma 3, we can confirm this by defining xi = ri for all i and uj = qj for

all j. Note that the constraints in QA,I ensure that (x,u)∈ S.

As a result, we verify that the conditions in Lemma 1 are satisfied, and we summarize the main

result of this section in the following proposition.

Proposition 1 (Tong and Topaloglu (2011)). The linear programs (D)A,I and (D-R)A,I are

equivalent.

Proposition 1 relies on the connection between (D)A,I and the Dantzig-Wolfe reformulation of

(D-R)A,I , which is made explicit in Lemma 1. The column generation subproblem to solve (D)A,I

is (CG)A,It , while the column generation subproblem to solve the Dantzig-Wolfe reformulation of

(D-R)A,I is (RCG)A,It . Equations (22)–(24) ensure that the two column generation subproblems

are equivalent when (CG)A,It has integer extreme points, which Lemma 3 confirms.

Proposition 1 was first shown in Tong and Topaloglu (2011), though their proof is markedly

different from ours. However, our main goal here is to highlight a general framework for constructing

reduced formulations that can also be applied in other settings.

4.2. Customer Choice Models

Substituting (8) into (D)φ yields the dual program

(D)A,C max
p

∑
t,(x,u)∈S

Rt(u)pt,x,u
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s.t.
∑

(x,u)∈S

xipt,x,u =


ci, if t= 1,∑
(x,u)∈S

xipt−1,x,u−
∑

(x,u)∈S

Qt−1,i(u)pt−1,x,u, if t > 1, ∀t, i, (25)∑
(x,u)∈S

pt,x,u = 1, ∀t, (26)

p ≥ 0,

where Rt(u) = ρt
∑

j fjPt,j(u) and Qt,i(u) = ρt
∑

j aijPt,j(u) are the revenue and consumption rate

of leg i during period t for the offer set given by u, respectively.

Zhang and Adelman (2009) discuss a column generation procedure to solve (D)A,C , and use an

integer program to solve the column generation subproblems in the special case of a multinomial

logit (MNL) choice model with disjoint consideration sets (Liu and van Ryzin 2008). Here, we focus

on reduced formulations that can be obtained with a general discrete choice model. In this case,

the column generation subproblem for a given t equals

(CG)A,Ct max
(x,u)∈S

Rt(u)−
∑
i

Vt,ixi−
∑
i

Vt+1,i (Qt−1,i(u)−xi)− θt,

where (V, θ) again refers to an optimal dual solution to the restricted master problem.

To construct a reduced formulation, we begin by formulating (CG)A,Ct as a linear program:

(RCG)A,Ct max
r,h

∑
u∈U

Rt(u)hu−
∑
i

Vt,iri−
∑
i

Vt+1,i

(∑
u∈U

Qt−1,i(u)hu− ri

)
− θt

s.t.
∑
u∈U

hu = 1, (27)

0≤ ri ≤ ci, ∀i, (28)∑
u∈U :i∈I(u)

hu ≤ ri, ∀i, (29)

hu ≥ 0, ∀u∈ U .

Here, I(u) =
⋃
j:uj=1 Ij corresponds to the set of legs used in an offer set given by u∈ U . Constraint

(27) states that exactly one set of products is offered, and constraint (28) provides a simple bound

on the resource levels. To motivate constraint (29), we first note that hu ≤ ri for all u, i ∈ I(u)

because products can only be offered when sufficient resources are available. Since constraint (28)

states that exactly one set of products is offered, this can be strengthened to obtain (29). This

strengthening is critical, as it guarantees that the constraints in (RCG)A,Ct yield integer extreme

points.

Lemma 4. The polyhedron QA,C = {(r,h)∈RI+2J

+ : (27), (28), (29)} is integral.

Proof. The proof follows by contradiction. Suppose (r̃, h̃) is a fractional extreme point of QA,C .

As a first step we observe that either r̃i = ci or r̃i =
∑

u∈U :i∈I(u) h̃u, since (r̃, h̃) is an extreme
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point. Let Ĩ = {i : r̃i = ci}. In addition, let Ũ = {u ∈ U : 0 < h̃u < 1} and L = |Ũ |. Then we must

have L> 1, for otherwise (r̃, h̃) is integral by our previous observation. Without loss of generality,

let Ũ = {ul : l = 1, . . . ,L} and let ωl = h̃ul for l = 1, . . . ,L. Next, we define solutions (r̂l, ĥl) for

l= 1, . . . ,L by letting

ĥlu =

{
1, if u= ul,
0, otherwise,

∀u∈ U ,

r̂li =

 ci, if i∈ Ĩ,
1, if i∈ I(ul) \ Ĩ,
0, otherwise,

∀i.

By construction, each solution (r̂l, ĥl) is integral and satisfies the constraints in QA,C . We can verify

that (r̃, h̃) =
∑L

l=1ω
l
(
r̂l, ĥl

)
, which implies that (r̃, h̃) cannot be an extreme point of QA,C .

In the following, we check that conditions (i) and (ii) in Lemma 1 are satisfied; this shows that

(D)A,C is equivalent to the reduced formulation

(D-R)A,C max
{rt,ht}∀t

∑
t,u∈U

Rt(u)ht,u

s.t. rt,i =

 ci, if t= 1,

rt−1,i−
∑
u∈U

Qt−1,i(u)ht−1,u, if t > 1, ∀t, i, (30)∑
u∈U

ht,u = 1, ∀t, (31)∑
u∈U :i∈I(u)

ht,u ≤ rt,i, ∀t, i, (32)

ht,u ≥ 0, ∀t,u∈ U .

For fixed t, condition (i) states that for every (x,u)∈X , there exists an (r,h)∈QA,C such that

Rt(u) =
∑
u′∈U

Rt(u
′)hu′ , (33)

xi = ri, ∀i, (34)

Qt−1,i(u)−xi =
∑
u′∈U

Qt−1,i(u
′)hu′ − ri, ∀i. (35)

Again, we obtain (33)–(35) by equating the terms corresponding to each individual dual variable

in (CG)A,Ct and (RCG)A,Ct , as well as equating the terms that do not involve a dual variable.

For every (x,u)∈ S, we can verify (33)–(35) by letting ri = xi for all i and hu′ = 1{u′ = u} for all

u′ ∈ U , and observing that (r,h)∈QA,C . Condition (ii) in Lemma 1 requires that for every extreme

point (r,h) of QA,C , there exists a state-action pair (x,u) ∈ S such that (33)–(35) are satisfied.

Because every extreme point of QA,C is integer, we can confirm this by defining xi = ri for all i

and choosing u such that hu = 1.

Consequently, the conditions in Lemma 1 are satisfied, and its application leads to the following

proposition.
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Proposition 2. The linear programs (D)A,C and (D-R)A,C are equivalent.

We note that constraint (28) is redundant in (D-R)A,C and therefore is removed. The reduced pro-

gram (D-R)A,C is still exponential over the product space, though it is no longer exponential over

the state space. Hence, the reduction result in Proposition 2 breaks the “curse of dimensionality”

in the state space, but not in the action space. This should be contrasted to the reduced program

(D-R)A,I for the independent demand case, where the size of the reduced program is polynomial

in the number of legs and the number of products. On an intuitive level, this is due to the fact

that products cannot be tracked independently when customers choose among them, while they

can be tracked independently when each arriving customer requests a specific product.

5. Separable Piecewise Linear Approximations

We now turn to the ALPs that result from applying the separable piecewise linear approximation

(9) for both the independent and discrete choice models of demand. In contrast to the affine

approximations considered in Section 4, constructing equivalent reduced formulations turns out to

be more involved and requires the use of Lemma 2, which imposes a set of dual optimal inequalities.

5.1. Independent Demand Models

Substituting (1) and (9) into (D)φ yields the dual program

(D)S,I max
p

∑
t,(x,u)∈S

(∑
j

λt,jfjuj

)
pt,x,u

s.t.
∑

(x,u)∈S:
xi≥k

pt,x,u =


1, if t= 1,∑
(x,u)∈S:
xi≥k

pt−1,x,u−
∑

(x,u)∈S,j:
xi=k

λt−1,jaijujpt−1,x,u, if t > 1,

∀t, i, k, (36)∑
(x,u)∈S

pt,x,u = 1, ∀t, (37)

p ≥ 0.

For notational convenience, we omit the index set {1, . . . , ci} for k when i is given. Suppose (V, θ)

is an optimal dual solution to a restricted master problem, and fix t. Then, the column generation

subproblem equals

(CG)S,It

max
(x,u)∈S

∑
j

λt,jfjuj −
∑
i,k

Vt,i,k1{xi ≥ k}−
∑
i,k

Vt+1,i,k

(∑
j

λt,jaijuj1{xi = k}−1{xi ≥ k}

)
− θt
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= max
(x,u)∈S

∑
j

λt,j

[
fj −

∑
i,k

aij (Vt+1,i,k−Vt+1,i,k−1)1{xi ≥ k}

]
uj −

∑
i

(Vt,i,k−Vt+1,i,k)1{xi ≥ k}− θt.

Here, we assume boundary conditions VT+1,i,k = 0 for all t, i, k and Vt,i,0 = 0 for all t, i.

(CG)S,It is more complicated than its counterpart (CG)A,It for the affine approximation, due to

the non-linear terms 1{xi ≥ k}uj. However, we can linearize the column generation subproblem by

introducing additional decision variables y and z, such that yi,k = 1 iff 1{xi ≥ k} for all i, k, and

zj,i,k = 1 iff 1{xi ≥ k} and uj = 1 for all j, i, k. Given these decision variables, we can formulate

(CG)S,It as an integer programming problem:

(CG′)S,It max
q,y,z

∑
j

λt,jfjqj −
∑
i,k

(Vt,i,k−Vt+1,i,k)yi,k−
∑
j

∑
i,k

λt,jaij(Vt+1,i,k−Vt+1,i,k−1)zj,i,k− θt

s.t. yi,k+1 ≤ yi,k, ∀i, k, (38)

qj = zj,i,1, ∀j, i : aij = 1, (39)

zj,i,k+1 ≤ zj,i,k, ∀j, i, k : aij = 1, (40)

zj,i,k ≤ yi,k, ∀j, i, k : aij = 1, (41)

qj + yi,k ≤ 1 + zj,i,k, ∀j, i, k : aij = 1, (42)

q,y,z binary. (43)

For notational convenience, we adopt the convention that yi,ci+1 = 0 for all i, and zj,i,ci+1 = 0 for

all j, i. Constraint (38) enforces the definition of the variables yi,k, while constraint (39) captures

the restriction that products can only be offered if sufficient resources are available. Constraints

(40)-(42) enforce the definition of zj,i,k. We note that there are alternative ways to express these

constraints.

As before, we aim to apply our general framework to construct a reduced formulation for (D)S,I .

To that end, we need to formulate (CG′)S,I as a linear program. For the affine approximations in

Section 4, simply relaxing the integrality constraints is sufficient because the subproblem polyhedra

are integral. Here, however, the linear programming relaxation of (CG′)S,It may result in a fractional

optimal solution. As a result, Lemma 1 cannot be applied and we resort to Lemma 2 to construct

a weakly equivalent reduced formulation.

To apply Lemma 2, we need to identify restrictions on the dual variables V that allow the sub-

problem to be relaxed. Our key observation is that, absent constraint (42), the resulting constraint

matrix is totally unimodular (by the same reasoning used in the proof of Lemma 3). But, constraint

(42) is redundant if the decision variables zj,i,k have non-negative objective function coefficients for

all j, i and k > 1. To see why this is the case, suppose that qj = 1, yi,k = 1 and zj,i,k = 0 for some j, i

and k (i.e., constraint (42) is violated). Then, the non-negative objective function coefficients allow
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us to set zj,i,k equal to 1 without loss of optimality. Note that constraint (42) is redundant for k= 1,

due to the presence of constraint (39). As a result, (CG′)S,It can be solved as a linear program if

Vt,i,k ≤ Vt,i,k−1 for all t, i, k, because this will guarantee that the objective function coefficients for

the decision variables zj,i,k are non-negative.

We comment that the restriction Vt,i,k ≤ Vt,i,k−1 for all t, i, k is sufficient to construct a reduced

formulation. However, (CG′)S,It can be simplified further if, in addition, Vt+1,i,k ≤ Vt,i,k for all

t, i, k. If this restriction holds, the decision variables yt,i,k will have non-positive objective function

coefficients and constraint (38) becomes redundant. In particular, we can let yt,i,k be equal to

minj:aij=1 zj,i,k without loss of optimality, because constraint (40) guarantees that constraint (38)

is satisfied.

The preceding discussion sets up the application of Lemma 2. In particular, suppose that the

dual restrictions Vt,i,k ≤ Vt,i,k−1 and Vt+1,i,k ≤ Vt,i,k are satisfied for all t, i, k. Then, (CG)S,It can be

solved using the linear program

(RCG)S,It max
q,y,z

∑
j

λt,jfjqj −
∑
i,k

Vt,i,kyi,k−
∑
i,k

Vt+1,i,k

(∑
j

λt,jaij(zj,i,k− zj,i,k+1)− yi,k

)
− θt

s.t. qj = zj,i,1, ∀j, i : aij = 1, (44)

zj,i,k+1 ≤ zj,i,k, ∀j, i, k : aij = 1, (45)

zj,i,k ≤ yi,k, ∀j, i, k : aij = 1, (46)

yi,k ≤ 1, ∀i, k : aij = 1. (47)

Note that the non-negativity constraints as well as the upper bounds on qj and zj,i,k are redundant,

because we assume zj,i,ci+1 = 0 for all j, i.

Given (RCG)S,It , we check that conditions (i)-(iii) in Lemma 2 are satisfied. Then, Lemma 2

states that (D)S,I is weakly equivalent to the reduced formulation

(D-R)S,I max
q,y,z

∑
t,j

λt,jfjqt,j

s.t. yt,i,k =


1, if t= 1,

yt−1,i,k−
∑

j:aij=1

λt−1,j(zt−1,j,i,k− zt−1,j,i,k+1), if t > 1, ∀t, i, k,

qt,j = zt,j,i,1, t, j, i : aij = 1, (48)

zt,j,i,k+1 ≤ zt,j,i,k, ∀t, j, i, k : aij = 1, (49)

zt,j,i,k ≤ yt,i,k, ∀t, j, i, k : aij = 1. (50)

Observe that the upper bounds (47) are redundant in the reduced formulation. Recall that weak

equivalence implies that the optimal solutions of (D)S,I and (D-R)S,I intersect. In particular,
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the conditions in Lemma 2 guarantee that there exists an optimal solution to the Dantzig-Wolfe

reformulation of (D-R)S,I that is feasible to (D)S,I .

To verify that the conditions in Lemma 2 are satisfied, we first introduce the following lemma.

Lemma 5. There exists an optimal solution (V ∗, β∗, γ∗, δ∗) to the dual of (D-R)S,I such that V ∗t,i,k ≤

V ∗t,i,k−1 and V ∗t+1,i,k ≤ V ∗t,i,k for all t, i, k.

Proof. See Appendix.

Lemma 5 confirms the dual optimal inequalities imposed in condition (ii) of Lemma 2. For a

given period t, condition (i) in Lemma 2 requires that for every (x,u) ∈ S, there exists a (q,y,z)

that satisfies constraints (44)-(47) such that

∑
j

λt,jfjuj =
∑
j

λt,jfjqj, (51)

1{xi ≥ k}= yi,k, ∀i, k, (52)∑
j:aij=1

λt,juj1{xi = k}−1{xi ≥ k}=
∑

j:aij=1

λt,j(zj,i,k− zj,i,k+1)− yi,k, ∀i, k. (53)

We confirm this by letting qj = uj, yi,k = 1{xi ≥ k}, and zj,i,k = 1{xi ≥ k}uj for all j, i, k.

Finally, fix t and suppose that Vt,i,k ≤ Vt,i,k−1 and Vt+1,i,k ≤ Vt,i,k for all i, k. Then, condition

(iii) in Lemma 2 requires that there exists an optimal solution (q∗,y∗,z∗) to (RCG)S,It such that

(51)–(53) are satisfied for some (x,u) ∈ S. Let (q,y,z) be any optimal solution to (RCG)S,It . By

our previous discussion, we can let q∗j = qj for all j, y∗i,k = minj:aij=1 zj,i,k, and z∗j,i,k = min(y∗i,k, q
∗
j )

without loss of optimality. Because the resulting solution will be integral, we can define xi =
∑

k y
∗
i,k

for all i and uj = q∗j for all j. Because z∗j,i,k = 1{xi ≥ k}uj under this definition, it follows that

(51)–(53) are satisfied.

To conclude, we verify that the conditions in Lemma 2 are satisfied, and summarize the main

result of this section in the following proposition.

Proposition 3. The linear programs (D)S,I and (D-R)S,I are weakly equivalent.

Proposition 3 relies on a set of dual restrictions that are satisfied by at least one optimal solution

to the reduced program. Our approach to identifying such dual optimal inequalities is to start by

formulating the column generation subproblem as an integer program. We then consider conditions

under which the formulation can be relaxed, and proceed to construct a reduced formulation

assuming these conditions are satisfied. Finally, we analyze the structure of the reduced program’s

dual to verify these conditions.
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5.2. Customer Choice Models

We obtain the separable piecewise linear approximation under customer choice by substituting (9)

into (D)φ, which yields

(D)S,C max
p

∑
t,(x,u)∈S

Rt(u)pt,x,u

s.t.
∑

(x,u)∈S:
xi≥k

pt,x,u =


1, if t= 1,∑
(x,u)∈S:
xi≥k

pt−1,x,u−
∑

(x,u)∈S:
xi=k

Qt−1,i(u)pt−1,x,u, if t > 1, ∀t, i, k, (54)

∑
(x,u)∈S

pt,x,u = 1, ∀t, (55)

p ≥ 0.

Meissner and Strauss (2012) solve a relaxation of (D)S,C by aggregating resource inventory levels.

Like Zhang and Adelman (2009), they use an integer program to solve the column generation

subproblems for a multinomial logit choice model with disjoint consideration sets. As before, we

construct reduced formulations for a general customer choice model. For a given t, the column

generation subproblem equals

(CG)S,Ct

max
(x,u)∈S

Rt(u)−
∑
i,k

Vt,i,k1{xi ≥ k}−
∑
i,k

Vt+1,i,k (Qt−1,i(u)1{xi = k}−1{xi ≥ k})− θt,

= max
(x,u)∈S

ρt
∑
j

Pt,j(u)

[
fj −

∑
i,k

aij (Vt+1,i,k−Vt+1,i,k−1)1{xi ≥ k}

]
−
∑
i,k

(Vt,i,k−Vt+1,i,k)1{xi ≥ k}− θt,

with (V, θ) an optimal dual solution to the restricted master problem and boundary conditions

VT+1,i,k = 0 and Vt,i,0 = 0 for all t, i, k.

Again, the non-linear terms in the objective function pose a challenge. As in the independent

demand case, however, we argue that (CG)S,Ct can be formulated as a linear program under certain

restrictions on the dual variables V . In particular, suppose that Vt+1,i,k ≤ Vt,i,k for all t, i, k, and

consider the following linear program for a given t.

(RCG)S,Ct max
h,y,z

∑
u∈U\{0}

Rt(u)hu−
∑
u∈U

∑
i∈I(u),k

(Vt+1,i,k−Vt+1,i,k−1)zu,i,k−
∑
i,k

(Vt,i,k−Vt+1,i,k)yi,k− θt

s.t.
∑

u∈U\{0}

hu ≤ 1, (56)

hu = zu,i,k, ∀u∈ U , i∈ I(u), (57)

zu,i,k+1 ≤ zu,i,k, ∀u∈ U , i∈ I(u), k, (58)∑
u∈U :i∈I(u)

zu,i,k ≤ yi,k, ∀i, k, (59)
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yi,k ≤ 1, ∀u∈ U , i∈ I(u), k. (60)

The decision variable hu = 1 iff the offer set corresponding to u is selected; note that h0 is defined

implicitly as the slack variable in constraint (56). We also introduce additional decision variables

y and z, such that yi,k = 1 iff 1{xi ≥ k}, and zu,i,k = 1 iff 1{xi ≥ k} and hu = 1. Constraint (56)

ensures that one offer set is selected, and constraint (57) enforces that products can only be offered

if the necessary resources are available. Constraints (58) and (59) enforce the definition of zu,i,k.

Because we adopt the convention that zu,i,ci+1 = 0 for all u, i, all bounds other than (60) are

redundant.

To understand why (RCG)S,Ct is equivalent to (CG)S,Ct when Vt+1,i,k ≤ Vt,i,k for all t, i, k, suppose

that we have an integer optimal solution to (RCG)S,Ct . Because the decision variables yi,k have

non-positive objective function coefficients and only occur in the right hand side of constraint (59),

we can let yi,k =
∑

u∈U :i∈I(u) zu,i,k without loss of optimality. Because the solution is integer, there

is exactly one u′ such that hu′ = 1 and therefore yi,k = zu′,i,k for all i, k. Thus, we confirm that

yi,k+1 ≤ yi,k for all i, k by constraint (58) and verify that zu,i,k = huyi,k for all u, i, k. We prove that

(RCG)S,Ct has integer extreme points using the following lemma.

Lemma 6. The polyhedron QS,C = {(h,y,z) : (56)− (60)} is integral.

Proof. The proof follows by contradiction. Suppose (h̃, ỹ, z̃) is a fractional extreme point of QS,C .

As a first step we observe that either ỹi,k = 1 or ỹi,k =
∑

u∈U :i∈I(u) z̃u,i,k, since (h̃, ỹ, z̃) is an extreme

point. Let Ĩ = {(i, k) : ỹi,k = 1}. In addition, let Ũ = {u ∈ U : 0< h̃u < 1} and L= |Ũ | (note that Ũ

may contain the empty offer set 0). We must have L> 1, for otherwise (h̃, ỹ, z̃) is integral. Without

loss of generality, let Ũ = {ul : l = 1, . . . ,L}. For each u ∈ Ũ , we also define the set Zu = {z̃u,i,k :

i ∈ I(u),1≤ k ≤ ci}. Let υu,1 > · · ·> υu,Mu > 0 be the distinct positive fractional values in the set

Zu. Note that υu,1 = h̃u = z̃u,i,1 for all i ∈ I(u) by constraints (57) and (58). For convenience, let

υu,Mu+1 = 0.

Next, we define solutions (ĥ(l,m), ŷ(l,m), ẑ(l,m)) for l= 1, . . . ,L and m= 1, . . . ,Mul by letting

ĥ(l,m)
u =

{
1, if u= ul,
0, otherwise,

∀u∈ U ,

ẑ
(l,m)
u,i,k =

{
1, if u= ul and z̃u,i,k ≥ υu,m,
0, otherwise,

∀u∈ U , i∈ I(u), k,

y
(l,m)
i,k =


1, if (i, k)∈ Ĩ,

ẑ
(l,m)
u,i,k , if (i, k) 6∈ Ĩ and i∈ I(u),
0, otherwise,

∀i, k.
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By construction, each solution (ĥ(l,m), ŷ(l,m), ẑ(l,m)) is integral and satisfies the constraints in QS,C .

Now, let ωl,m = υul,m−υul,m+1 for all l= 1, . . . ,L and m= 1, . . . ,Mul . In particular, for any ul ∈ Ũ

we have

L∑
l=1

M
ul∑

m=1

ωl,mĥ
(l,m)

ul =

M
ul∑

m=1

ωl,m =

M
ul∑

m=1

(υul,m− υul,m+1) = υul,1 = h̃ul , and

L∑
l=1

M
ul∑

m=1

ωl,mẑ
(l,m)

ul,i,k
=

M
ul∑

m=1:
z̃u,i,k≥υu,m

ωl,m =

M
ul∑

m=1:
z̃u,i,k≥υu,m

(υul,m− υul,m+1) = z̃u,i,k, ∀i, k.

Thus, we verify that

(h̃, ỹ, z̃) =
L∑
l=1

M
ul∑

m=1

ωl,m

(
ĥ(l,m), ŷ(l,m), ẑ(l,m)

)
,

which implies that (h̃, ỹ, z̃) cannot be an extreme point of QS,C .

The preceding discussion establishes a linear programming formulation for the column generation

subproblem, and restrictions on the dual under which this formulation is valid. Thus, we are in a

position to apply Lemma 2. Assuming its conditions are satisfied, Lemma 2 states that (D)S,I is

weakly equivalent to the following reduced formulation.

(D-R)S,C max
h,y,z

∑
t,u∈U\{0}

Rt(u)ht,u

s.t. yt,i,k =

{
1, if t= 1,
yt−1,i,k−

∑
u∈U Qt−1,i(u)(zt−1,u,i,k− zt−1,u,i,k+1), if t > 1,

∀t, i, k, (61)∑
u∈U\{0}

ht,u ≤ 1, ∀t, (62)

ht,u = zt,u,i,1, ∀t,u∈ U , i∈ I(u), (63)

zt,u,i,k+1 ≤ zt,u,i,k, ∀t,u∈ U , i∈ I(u), k, (64)∑
u∈U :i∈I(u)

zt,u,i,k ≤ yt,i,k, ∀t, i, k. (65)

As in the independent demand case, we note that the upper bounds (60) are redundant in the

reduced formulation.

To confirm the conditions in Lemma 2, we first introduce the following lemma. The lemma

guarantees that the dual restrictions we impose are dual optimal inequalities.

Lemma 7. There exists an optimal solution (V ∗, α∗, β∗, γ∗, δ∗) to the dual of (D-R)S,C such that

V ∗t+1,i,k ≤ V ∗t,i,k for all t, i, k.

Proof. See Appendix.
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Condition (i) in Lemma 2 requires that for any given t and (x,u) ∈ S, there exists a (h,y,z) ∈

QS,C such that

Rt(u) =
∑
u′∈U

Rt(u
′)hu′ , (66)

1{xi ≥ k}= yi,k, ∀i, k, (67)

Qt−1,i(u)1{xi = k}−1{xi ≥ k}=Qt−1,i(u)(zu,i,k− zu,i,k+1)− yi,k, ∀i, k. (68)

We confirm this by letting hu′ = 1{u′ = u} for all u′ ∈ U , yi,k = 1{xi ≥ k}, and zu,i,k = 1{xi ≥

k}1{u′ = u} for all u′ ∈ U , i∈ I(u′), k. It follows that (h,y,z)∈QS,C .

Now, fix t and suppose that Vt+1,i,k ≤ Vt,i,k for all i, k. Then, condition (iii) in Lemma 2 requires

that there exists an optimal solution (h,y,z) to (RCG)S,Ct such that (66)-(68) are satisfied for

some (x,u)∈ S. Let (h,y,z) be an optimal solution to (RCG)S,Ct . By our previous discussion, we

can assume yi,k =
∑

u∈U :i∈I(u) zu,i,k without loss of optimality. Because the resulting solution will

be integral, we can define xi =
∑

k yi,k for all i and choose u such that hu = 1 . We can verify that

(66)-(68) are satisfied for the resulting (x,u)∈ S.

This implies that the conditions in Lemma 2 are satisfied, and we express the main result of this

section in the following proposition.

Proposition 4. The linear programs (D)S,C and (D-R)S,C are weakly equivalent.

In contrast to the independent demand model, the proof of Proposition 4 does not require that

the dual values Vt,i,k are decreasing in the remaining capacity at any given point in time for some

optimal solution to the dual of the reduced program, even though it is possible to show that

such a solution exists. Intuitively, this is because the decision variables corresponds to offer sets

rather than individual products. The size of the reduced program (D-R)S,C is still exponential in

the number of products and therefore is not as compact as the reduced program (D-R)S,I in the

independent demand case.

5.3. Interpretation of the Reduced Programs

The reduced programs considered in the paper admit an interesting probabilistic interpretation. In

this section, we discuss a probabilistic interpretation for the reduced program (D-R)S,I resulting

from separable piecewise linear approximation for NRM with independent demand. Let {Xt,Ut}∀t
be a collection of random variables that track the evolution of the state-action pairs over time,

whose distribution is given by pt,x,u. Then, comparing the flow-balance constraints in (D)S,I and

(D-R)S,I reveals the following variable definitions:

qt,j =
∑

x∈X ,u∈U(x)

ujpt,x,u = P (Ut,j = 1) = EUt,j, ∀t, j, (69)
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zt,j,i,k =
∑

(x,u)∈S:
xi≥k

ujpt,x,u = E[Ut,j|Xt,i ≥ k]P (Xt,i ≥ k)

= P (Xt,i ≥ k,Ut,j = 1), ∀t, j, i, k : aij = 1, (70)

yt,i,k =
∑

(x,u)∈S:
xi≥k

pt,x,u = P (Xt,i ≥ k), ∀t, i, k, (71)

Therefore, the variable yt,i,k can be interpreted as the probability that the remaining capacity on

leg i in period t is at least k. The variable qt,j represents the probability that product j is accepted

in period t. The variable zt,j,i,k is the joint probability that the remaining capacity on leg i is at

least k and product j is offered in period t.

Using equations (69), the objective function of (D-R)S,I can be written as
∑

t,j λjfjEUt,j. Note

that the term λjfjEUt,j can be interpreted as expected revenue from class-j customers in period

t. Hence, the objective is the total expected revenue from all classes. The constraints in (D-R)S,I

can be written as

P (Xt,i ≥ k) =

{
1, if t= 1,

P (Xt−1,i ≥ k)−
∑

j λjaijP (Xt,i = k,Ut,j = 1), if t > 1,
∀t, i, k, (72)

P (Ut,j = 1) = P (Xt,i ≥ 1,Ut,j = 1), ∀t, i, j : aij = 1, (73)

P (Xt,i ≥ k+ 1,Ut,j = 1)≤ P (Xt,i ≥ k,Ut,j = 1), ∀t, i, j, k : aij = 1, (74)

P (Xt,i ≥ k,Ut,j = 1)≤ P (Xt,i ≥ k), ∀t, i, k. (75)

The constraints above have a natural probabilistic interpretation. Constraint (72) enforces time

consistency on the marginal distribution of Xt,i. For t= 1, it requires that P (X1,i ≥ k) = 1 for all i, k,

and therefore forces X1,i = ci. For t > 1, the constraint enforces the relationship between marginal

distributions of Xt,i and Xt−1,i. Constraint (73) enforces the resource requirements: dividing both

sides by P (Ut,j = 1), it states that P (Xt,i ≥ 1|Ut,j = 1) = 1. Constraint (74) requires that the

(inverse) cumulative distribution functions on Xt are monotone, conditional on Ut,j = 1. Similarly,

if we divide both sides by P (Xt,i ≥ k), constraint (75) requires that P (Ut,j = 1|Xt,i ≥ k)≤ 1.

The discussion above shows that the program (D-R)S,I enforces a set of necessary conditions

on the stochastic process {(Xt,Ut)}. It is not hard to see that the conditions imposed are not

sufficient to track the full dynamics of {(Xt,Ut)}, because it focuses on the marginal distributions

on Xt. Therefore, (D-R)S,I is a relaxation to the original dynamic programming formulation.

5.4. Lagrangian Relaxation

To further highlight the interpretation of the reduced programs, we briefly discuss their relation-

ship to the Lagrangian relaxation approach for NRM introduced in Topaloglu (2009). A detailed
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discussion of the equivalence between separable piecewise linear approximations and Lagrangian

relaxation approaches can be found in Kunnumkal and Talluri (2011, 2014).

To illustrate this connection, consider the reduced formulation (D-R)S,I under an independent

demand model and take the Lagrangian relaxation with respect to constraint (48) with the associ-

ated Lagrangian multiplier β and the corresponding Lagrangian value ϑ(β). Because the resulting

problem decomposes by leg, this yields

ϑ(β) =
∑
t,j

λt,j

[
fj −

∑
i

aijβt,j,i

]+

+
∑
i

ϑ̂i(β), (76)

where

ϑ̂i(β) = max
y,z

∑
t,j

βt,j,izt,j,i,1

s.t. yt,i,k =


1, t= 1,

yt−1,i,k−
∑

j:aij=1

λt−1,jaij(zt−1,j,i,k− zt−1,j,i,k+1), t > 1, ∀t, k,

zt,j,i,k+1 ≤ zt,j,i,k, ∀t, j, k : aij = 1,

zt,j,i,k ≤ yt,i,k, ∀t, j, k : aij = 1.

We observe that the dual of this program is equivalent to the linear programming formulation of

the dynamic program for a single-leg revenue management problem (see the proof of Lemma 5

for additional details). Therefore, the Lagrangian relaxation (76) is identical to the expression in

Proposition 2 in Topaloglu (2009). Since (D-R)S,I is a linear program, it follows that the Lagrangian

bound minβ ϑ(β) equals the optimal solution value of (D-R)S,I .

A similar line of reasoning can also be used to obtain a Lagrangian relaxation for the choice

setting. With slight abuse of notation, taking the Lagrangian relaxation with respect to constraint

(63) in (D-R)S,C yields

ϑ(β) =
∑
t

max
u∈U

Rt(u)−
∑
i∈I(u)

βt,u,i

+
∑
i

ϑ̂i(β), (77)

where

ϑ̂i(β) = max
y,z

∑
t,u∈U :i∈I(u)

βt,u,izt,u,i,k

s.t. yt,i,k =


1, t= 1,

yt−1,i,k−
∑

u∈U Qt−1,i(u)(zt−1,u,i,k− zt−1,u,i,k+1), t > 1,

∀t, k,

zt,u,i,k+1 ≤ zt,u,i,k, ∀t,u∈ U , i∈ I(u), k,∑
u∈U :i∈I(u)

zt,u,i,k ≤ yt,i,k, ∀t, k.
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We leave it to the reader to verify that the dual of this program is again equivalent to the linear pro-

gramming formulation of the dynamic program for a choice-based single-leg revenue management

problem. Thus, solving the Lagrangian dual minβ ϑ(β) yields the same bound as the reduced for-

mulation (D-R)S,C . Note though that in this case the Lagrangian multipliers are offer set specific;

for further discussion, we refer to Kunnumkal and Talluri (2014).

6. Numerical Experiments

We conduct numerical experiments on test instances taken from Topaloglu (2009) to investigate

the computational performance of the reduced formulations introduced in this paper. The test

instances in Topaloglu (2009) consider hub-and-spoke networks with independent demand. There

are two flight legs on each spoke, where one is from the hub and the other one is to the hub, and

two fare classes on each possible itinerary. Each test instance is labeled by (T , N , κ, ρ), where T

is the number of periods, N is the number of non-hub locations, κ is the ratio between high and

low fare classes for each itinerary, and ρ=
∑

i,j,t aijλt,j∑
i ci

is the load factor. For more details about the

test instances, please refer to Topaloglu (2009).1

Standard solution approaches for solving the ALP formulation for NRM with independent

demand (D)S,I are column generation or constraint sampling. Due to the dramatic reduction in

problem size, however, the reduced program (D-R)S,I can be solved directly using a linear program-

ming solver. Our tests were performed on a Intel Quad Core Q9650 3.00GHZ computer running

Windows 7 Professional 64-bit. The formulation was implemented using Visual C++ 2010 and

CPLEX 12.3. Our code uses the default interior point implementation in CPLEX, which relies

on a barrier method. Note that standard implementations of interior point algorithms for linear

programming do not give either upper or lower bounds on optimal objective value in each iteration.

Even though it is possible to construct feasible primal and dual solutions from crossover proce-

dures, our experience is that these procedures can take a long time. The upper and lower bounds

we obtain are constructed using two recursive procedures. The Appendix gives more details on the

construction procedures. The resulting bounds allows us to evaluate the optimality gap during the

solution process.

Kunnumkal and Talluri (2011) show that the Lagrangian relaxation is equivalent to the separa-

ble piecewise approximation (D)S,I ; see also the relevant discussion in Section 5.4. Therefore, an

alternative approach to solving the separable piecewise linear approximation (D)S,I is to solve the

Lagrangian relaxation proposed in Topaloglu (2009). Topaloglu (2009) proposes a subgradient algo-

rithm to solve the Lagrangian relaxation of the NRM problem under independent demand; using

1 See also http://people.orie.cornell.edu/huseyin/research/rm_datasets/rm_datasets.html.
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policy simulation, Topaloglu (2009) establishes superiority of the Lagrangian relaxation approach

compared with several benchmark policies. Kunnumkal and Talluri (2011) observe in numerical

tests that the subgradient algorithm proposed in Topaloglu (2009) is much faster than solving

the separable piecewise linear ALP (D)S,I using a column generation approach. When reporting

numerical results, we also report the corresponding results in Topaloglu (2009). Note that the

computational setup (i.e., CPU speed, memory, etc.) in Topaloglu (2009) is different from ours.

In particular, it uses a 2.4GHz CPU. For this reason, the computational times are not directly

comparable to ours, but we report the results to give an overall sense on the computational times.

In addition to computational setup, the solution time of a subgradient algorithm also depends on

parameters that often require some tuning. One potential weakness of the subgradient algorithm

used in Topaloglu (2009) is its dependence on an ad-hoc stopping criterion that can cause pre-

mature termination. In contrast, solving the reduced program (D-R)S,I directly does not require

parameter tuning and can achieve arbitrary optimality guarantees.

6.1. Computational Results

Tables 1 and 2 report upper bounds, optimality gaps, and computational times when solving

(D-R)S,I with three convergence tolerance parameter values for test instances with 200 periods

and 600 periods, respectively. We tested with three convergence tolerance parameter values 10−2,

10−3, and 10−4, since the computational times of interior point algorithms can be greatly affected

by the convergence tolerance parameter. The computational times are reported in the last three

columns in the tables. The tables show that the computational times for different convergence

tolerance values differ dramatically. Understandably, a smaller convergence tolerance means longer

time to converge.

We also report the computational times taken from Topaloglu (2009) in the third column of the

two tables. With very few exceptions, the solution times for all three convergence tolerance values

are shorter than the ones reported in Topaloglu (2009), even though the computational setups

are somewhat different. We emphasize that solving (D-R)S,I directly has at least two merits: (i)

adjusting convergence tolerance parameter provides a way to trade-off solution time with solution

quality, and (ii) little customization or tuning is required as the solution method uses standard

linear programming algorithms.

6.2. Bounds

The fourth to sixth columns in Tables 1 and 2 report upper bounds for the three convergence

tolerance values, while the seventh to ninth columns report percentage gaps between upper and
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lower bounds. The percentage gaps provide an optimality guarantee. The optimality gaps for

the majority of problem instances are within 1% for all three convergence tolerance values. The

maximum optimality gap is less than 2%. As we decrease the convergence tolerance value, the

optimality gaps reduce significantly. The optimality gaps for smaller convergence tolerance values

also tend to be smaller. In particularly, for the convergence tolerance value 10−4, the optimality

gaps are no larger than 0.02% across the two tables, suggesting that the solutions we obtain are

very close to optimality. We point out, however, that for all three convergence tolerance values,

the upper bounds are very close, and the optimality gaps are mainly due to the lower bounds.

Therefore, even for convergence tolerance value 10−2, the primal solution is already quite close

to optimal. Therefore, solving the reduced programs using an interior point algorithm does give

high-quality solutions.

We also report the Lagrangian upper bounds from Topaloglu (2009) in the second column in

Tables 1 and 2. One immediate observation is that the Lagrangian upper bounds are looser than

the upper bounds for all three convergence tolerance values. Therefore, even with a convergence

tolerance value 10−2, solving (D)S,I directly gives better upper bounds, even though the computa-

tional times overall are considerably shorter. There are instances where the subgradient algorithms

converge very quickly, e.g., for problem instance (600,8,1.0,4) in Table 2. However, the reported

Lagrangian bound (22960) is more than 1% higher than the three upper bounds from solving

(D-R)S,I . This suggests that for this particular problem instance, the subgradient algorithm used

to solve the Lagrangian relaxation stopped prematurely.

7. Summary and Future Directions

This paper considers reductions of ALPs for NRM problems resulting from the affine and separable

piecewise linear approximations. Our results apply to settings with and without customer choice.

Central to our research is the connection between the reduced linear programs and their Dantzig-

Wolfe reformulations. To establish equivalence, we explore properties of the underlying polyhedra

in the column generation subproblems. In particular, we require that the polyhedra have integral

extreme points. For this reason, we do not expect the equivalence to hold for general stochastic

dynamic programs. Nevertheless, the idea of Dantzig-Wolfe reformulation is a very general one.

Therefore, it would be interesting to explore our idea in other problem contexts.

Throughout the paper, our focus has been on equivalent reductions — the reduced program

produces solutions that are exact for the original, much larger ALPs. While equivalence is certainly

desirable, an approximate solution may be acceptable. For this reason, we believe there is consid-

erable value to consider reduced programs even when we cannot establish equivalence to original

ALPs. In that case, it would be valuable to show performance guarantees or error bounds.
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The numerical experiment in Section 6 shows that solving the reduced formulation for separable

piecewise linear approximation in the independent demand case yields high quality solutions. The

reductions in our paper also open up possibilities to develop specialized algorithms to improve

numerical performance, which is a promising research direction not pursued in the current paper.

For affine approximations to NRM, Vossen and Zhang (2014) show that a specialized aggrega-

tion/disaggregation algorithm dramatically improves numerical performance. The reduced formu-

lation for separable piecewise linear approximation in the choice case is still exponential in the

number of products. Our numerical testing suggests that directly solving the reduced formulations

is still quite computationally intensive. Therefore, specialized algorithms need to be developed

to take advantage of the reduced formulations in this case. We leave this development to future

research.
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Appendix

Summary of Notation

I The number of legs
J The number of products
T The number of periods
I The set of legs: I = {1, . . . , I}
J The set of products: J = {1, . . . , J}
T The set of periods: T = {1, . . . , T}
i Leg index: i∈ I
j Product index: j ∈J
t Time period: t∈ T
A Consumption matrix of dimension I ×J with entries aij ∈ {0,1}
aj The j-th column of A
c Resource capacity vector: c= (c1, . . . , cI)∈ZI+
fj Fare of product j, j ∈J
ρt The probability of a customer arrival during period t, t∈ T
U The set of all possible (characteristic vectors of) offer sets: U = {0,1}J
U(x) Feasible (characteristic vectors of) offer sets in state x: U(x) = {u∈ U : ajuj ≤ x,∀j}
Pt,j(u) The probability that an arriving customer will choose product j during period t when

the offer set is u
λt,j The probability that a class-j customer arrives during period t, t∈ T , j ∈J , for

the independent demand model
X State space: X = {x∈ZI+ : x≤ c}
S Set of feasible state-action pairs: S = (x,u)∈ S ≡ {(x,u)∈X ×U : u∈ U(x)}
Ij The set of legs used by product j ∈J : Ij = {i∈ I : aij = 1}
I(u) The set of legs used by offer set u: I(u)≡

⋃
j:uj=1 Ij

Proof of Lemma 5

The dual of (D-R)S,I equals

(P-R)S,I max
V,β,γ,δ

∑
i

ci∑
k=1

V1,i,k

s.t. Vt,i,k−Vt+1,i,k =
∑

j:aij=1

δt,j,i,k ∀t, i, k, (78)

δt,j,i,k− γt,j,i,k =

{
βt,j,i−λt,jVt+1,i,1, if k= 1,
λt,j(Vt+1,i,k−1−Vt+1,i,k)− γt,j,i,k−1, if k > 1,

∀t, i, j, k : aij = 1, (79)∑
i

aijβt,j,i = λt,jfj, ∀t, j, (80)

γt,j,i,k, δt,j,i,k ≥ 0, ∀t, i, j, k : aij = 1. (81)

Observe that constraint (78), together with the non-negativity of δt,j,i,k, implies that Vt+1,i,k ≤ Vt,i,k
for all t, i, k in any dual solution (V,β, γ, δ).
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To prove there exists an optimal dual solution (V ∗, β∗, γ∗, δ∗) such that V ∗t,i,k ≤ V ∗t,i,k−1 for all

t, i, k, we first observe that (P-R)S,I decomposes by leg for a given β. Then, we show that the result-

ing subproblems are equivalent to the dynamic programming formulation of a single-leg resource

revenue management problem. This completes the proof, as it is well-known that the value function

in a single-leg revenue management problem is marginally decreasing in the remaining capacity at

any given point in time (Lautenbacher and Stidham 1999).

Specifically, for any given β that satisfies constraint (80) we can obtain an optimal solution to

(P-R)S,I by solving the following subproblems for all i:

(P-R)i(β) max
V,δ,γ

ci∑
k=1

V1,i,k

s.t. Vt,i,k−Vt+1,i,k =
∑

j:aij=1

δt,j,i,k ∀t, k, (82)

δt,j,i,k− γt,j,i,k =

{
βt,j,i−λt,jVt+1,i,1, if k= 1,
λt,j(Vt+1,i,k−1−Vt+1,i,k)− γt,j,i,k−1, if k > 1,

∀t, j, k : aij = 1, (83)

γt,j,i,k, δt,j,i,k ≥ 0, ∀t, j, k : aij = 1. (84)

To clarify the relation to the dynamic programming formulation, we reformulate (P-R)i(β) as

(P-R)′i(β) max
ϑ,∆

ϑ1,i,ci

s.t. ϑt,i,k−ϑt+1,i,k =
∑

j:aij=1

∆t,j,i,k, ∀t, k, (85)

∆t,j,i,k ≥ βt,j,i−λt,j (ϑt,i,k−ϑt,i,k−1) , ∀t, j, k : aij = 1, (86)

∆t,j,i,k ≥ ∆t,j,i,k−1, ∀t, j, k : aij = 1. (87)

In the above, we apply the change of variables ϑt,i,k =
∑k

k′=1 Vt,i,k′ and ∆t,j,i,k =
∑k

k′=1 Vt,i,k′ for all

t, j, i, k. Note that ϑt,i,0 = 0 for all t, i and ∆t,j,i,0 = 0 for all t, j, i : aij = 1. We obtain constraints (85)

and (86) by adding the corresponding constraints (82) and (83) for k′ = 1, . . . , k. This effectively

transforms the decision variables γt,j,i,k into surplus variables in constraint (86), which justifies

their removal from the formulation. Constraint (87) derives from the non-negativity of δt,j,i,k. To see

that (P-R)i(β) is equivalent (P-R)′i(β), suppose we have a feasible solution (ϑ̃, ∆̃) to (P-R)′i(β).

Then, the solution Ṽt,i,k = ϑ̃t,i,k − ϑ̃t,i,k−1 for all t, k, δ̃t,j,i,k = ∆̃t,j,i,k − ∆̃t,j,i,k−1 for all t, j, k, and

γ̃t,j,i,k = βt,j,i−λt,jṼt,i,k− ∆̃t,j,i,k for all t, j, k is feasible to (P-R)i(β).

Observe that (P-R)′i(β) is an equivalent linear programming formulation of a single-leg revenue

management problem, in that the decision variables ϑ correspond to the value function of the

single-leg dynamic program and constraints (85) and (86) express the DP recursion

ϑt,i,k = ϑt+1,i,k +
∑

j:aij=1

[βt,j,i−λt,j (ϑt,i,k−ϑt,i,k−1)]
+
, ∀t, i, k.
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Note that constraint (87) is in fact redundant, because the LP formulation using only (85) and

(86) yields an optimal solution such that Vt,i,k = ϑt,i,k−ϑt,i,k−1 ≤ ϑt,i,k−1−ϑt,i,k−2 = Vt,i,k−1. Aside

from the concavity result we set out to show, this also implies that the right hand side in constraint

(86) is increasing in k for all t, j.

Proof of Lemma 7

The dual of (D-R)S,C equals

(P-R)S,C min
V,α,β,γ,δ

∑
t

αt +
∑
i,k

V1,i,k

s.t. Vt,i,k−Vt+1,i,k = δt,i,k, ∀t, i, k, (88)

δt,i,k− γt,u,i,k =

{
βt,u,i−Qt,i(u)Vt+1,i,k, if k= 1,

Qt,i(u) [Vt+1,i,k−1−Vt+1,i,k]− γt,u,i,k−1, if k > 1,
∀t,u∈ U , i∈ I(u), k, (89)

αt +
∑
i∈I(u)

βt,u,i ≥ Rt(u), ∀t,u∈ U , (90)

γt,u,i,k, δt,i,k ≥ 0, ∀t,u∈ U , i, k. (91)

Constraint (88), together with the non-negativity of δt,i,k, implies Vt+1,i,k ≤ Vt,i,k for all t, i, k.

Procedures to Construct Primal and Dual Feasible Solutions

The corresponding primal formulation of (D-R)S,I is given by (P-R)
S,I

. Given an infeasible solu-

tion (Ṽ, β̃, γ̃, δ̃) to (P-R)
S,I

, a feasible solution (V̂, β̂, γ̂, δ̂) can be constructed using the following

recursive procedure.

Initialization: Take V̂T+1,i,k = 0 for all i, k, β̂t,j,i = σt,jβ̃t,j,i.

Backward recursion:

For t= T, . . . ,1; k= 1, . . . , ci

δ̂t,j,i,k =

{
[β̂t,j,i−λt,jV̂t+1,i,k]

+, if k= 1,

[λt,j(V̂t+1,i,k−1− V̂t+1,i,k)− γ̂t,j,i,k−1]+, if k > 1,
∀j, i, k : aij = 1,

γ̂t,j,i,k =

{
[β̂t,j,i−λt,jV̂t+1,i,k]

−, if k= 1,

[λt,j(V̂t+1,i,k−1− V̂t+1,i,k)− γ̂t,j,i,k−1]−, if k > 1,
∀j, i, k : aij = 1,

V̂t,i,k = V̂t+1,i,k +
∑
j

aij δ̂t,j,i,k,∀i, k.

End For

In the above, σt,j =
λt,jfj∑
i aij β̃t,j,i

is a scale factor to ensure feasibility. We note that the backward

recursion does in fact solve, for each leg, the dynamic programming formulation of the correspond-

ing single-leg revenue management problem (see the proof of Lemma 5 for additional details).

Similarly, given an infeasible solution (q̃, ỹ, z̃) to (D-R)S,I , a feasible solution (q̂, ŷ, ẑ) can be

constructed using the following constructive procedure.



38

Initialization: ŷ1,i,k = 1 for all i, k.

Forward recursion:

For t= 1, . . . , T

q̂t,j = min{q̃t,j, min
i:aij=1

ŷt,i,1}, ∀j.

For k= 1, . . . , ci

ẑt,j,i,k =

{
q̂t,j, if k= 1,

min{ŷt,i,k, ẑt,j,i,k−1}, if k > 1,
∀j, i, k : aij = 1,

ŷt+1,i,k = ŷt,i,k−
∑
j

λt,jaij(ẑt,j,i,k− ẑt,j,i,k+1), ∀i, k.

End For

End For
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