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Abstract

We develop a Markov decision process formulation of a dynamic pricing problem for multiple substitutable flights between the same
origin and destination, taking into account customer choice among the flights. The model is rendered computationally intractable for
exact solution by its multi-dimensional state and action spaces, so we develop and analyze various bounds and heuristics. We first
describe three related models, each based on some form of pooling, and introduce heuristics suggested by these models. We also develop
separable bounds for the value function which are used to construct value- and policy-approximation heuristics. Extensive numerical
experiments show the value- and policy-approximation approaches to work well across a wide range of problem parameters, and to out-
perform the pooling-based heuristics in most cases. The methods are applicable even for large problems, and are potentially useful for
practical applications.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The development of Internet distribution channels has helped create both opportunities and challenges in airline-ticket
pricing. On one hand, it has allowed price changes to be made quickly and frequently with negligible costs. On the other,
prices have become more visible to consumers because comparison shopping can be done with the click of a mouse. Old
revenue management models that rely on the notion of ‘‘exogenous demand for a fare class” are becoming less appropriate,
and consequently, it is important to develop operational models that incorporate customer choice.

From a customer’s viewpoint, flight schedule and price information is often readily available when making a purchase
decision. For example, on November 22, 2006, the website of JetBlue Airways showed nine different flights spread through-
out the day from 6:15 a.m. to 9:15 p.m. for a one-way trip on December 4, 2006 from New York (JFK) to Orlando (MCO).
Prices differed across the flights. The earliest and latest flights were priced at $79. One of the other seven flights was priced
at $124, and all the other flights were priced at either $79 or $99. Given such information on flight schedule and the price
quotes, customers make their purchase decisions based on their own preferences: Do they mind taking a very early flight, or
taking an evening flight and arriving late in the night? From our own experience as consumers, it is not hard to imagine that
prices on the mid-day flights would affect choices of customers and effectively change demand for morning or evening
flights. Given that consumers do typically choose among alternatives, how should an airline price its flights? This paper
contains models to help answer this question.
0377-2217/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
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We study a dynamic pricing problem for multiple substitutable flights between the same origin and destination, in which
the airline’s objective is to maximize the total expected revenue from customer bookings over the finite selling horizon by
setting the prices of the flights. Customers choose among the flights (or decide not to purchase) based upon their own pref-
erences and the prices of all the flights offered. The problem we consider is particularly relevant to low-cost airlines that sell
many tickets on the Internet, fly point-to-point between select city pairs, and have multiple-flights scheduled for the same
day between each pair. Low-cost airlines also typically use a simplified fare structure (in comparison to those employed by
traditional carriers). At each point in the booking horizon, prices for each flight are visible to customers. In addition, the
effect of capacity inflexibility is even more pronounced for many low-cost airlines in comparison to traditional carriers. For
example, JetBlue owns only one type of airplane (Airbus A320), which makes capacity adjustments by contingent fleet
assignment impossible. Given the inflexible capacity and the simplified fare structure, pricing is a crucial lever for matching
demand and capacity. Other low-fare airlines that face these issues include European carriers such as Ryanair and EasyJet.
Although Internet sales make up a smaller fraction of total business for major carriers (such as Northwest, Delta, etc.),
they too face problems in which customers have a choice among multiple flights between a common origin and destination.
More generally, our models are applicable to retailers that employ dynamic pricing strategies to sell substitutable products
over a finite horizon.

Most models for airline pricing consider one-dimensional problems with a single flight, where customer purchase deci-
sions are based only upon the price for that flight. Such one-dimensional problems do not account for the effects of con-
sumer behavior that are captured in our model. In our multiple-flight setting, the fact that bookings for any particular
flight are influenced by the price of tickets on all the flights makes solving the problem considerably more difficult than
solving multiple single-dimensional problems each with just one flight and no consumer substitution effects.

1.1. Literature review

Dynamic pricing problems have been studied extensively in the economics, marketing, and operations literature. We
review pricing research only in the revenue management context that is directly related to our model. In this body of lit-
erature, capacity (or inventory) is assumed to be fixed, or is prohibitively expensive to change during the selling horizon.
For reviews of pricing models for revenue management, please refer to Bitran and Caldentey (2003) and Talluri and van
Ryzin (2004b), and for a survey of the literature that considers both pricing and inventory decisions, see Elmaghraby and
Keskinocak (2003). We also briefly describe some revenue management models where customer choice is modeled explic-
itly, although no pricing decisions are involved. We close by reviewing several studies aimed at deriving customer choice
parameters in the airline context.

Dynamic pricing problems for a fixed stock of a single item sold in a finite selling horizon have attracted considerable
attention in the revenue management literature. Gallego and van Ryzin (1994) formulate an intensity control model of the
problem and derive several structural properties. They also study a heuristic policy based on a deterministic upper bound
and prove that it is asymptotically optimal. Zhao and Zheng (2000) consider a similar problem with nonhomogeneous
demand and show that dynamic pricing policies can have a significant impact on revenue when demand is nonhomogene-
ous. Bitran and Mondschein (1997) present a continuous-time model in the context of fashion retailing and compare it to a
model with periodic pricing review, where price is allowed to change only at several pre-specified time points. They show
that the loss in expected revenue from implementing an appropriate periodic pricing review policy is small.

Gallego and van Ryzin (1997) consider dynamic pricing problems where a set of resources is used to produce a set of
products. They develop asymptotically optimal heuristic policies and apply their results to network revenue management
problems. Kleywegt (2001) considers a deterministic optimal-control formulation of a pricing problem where multiple
products are sold to multiple customer classes over time. Lin and Li (2004) develop bounds on the value function of a
dynamic pricing problem for a line of substitutable products. Liu and Milner (2006) study a multi-item pricing problem
with a common pricing constraint. They obtain an optimal policy for a deterministic version of the problem and propose
heuristics for the stochastic version.

Talluri and van Ryzin (2004a) study a single-leg revenue management problem where customers choose among the open
fare classes. They prove structural properties that greatly simplify the computation of an optimal policy. Maglaras and
Meissner (2006) consider the pricing problem faced by a firm that owns a fixed stock of a resource, which is used to produce
several different products. Customer choice among the products is modeled by joint price elasticity. They prove structural
properties that reduce the decision problem to an equivalent one-dimensional problem, and propose several heuristic pol-
icies. Iyengar et al. (2004) and van Ryzin and Liu (2007) consider choice-based linear programming models for network
revenue management. van Ryzin and Vulcano (2006) consider a network revenue management problem with customer
choice behavior, and propose a simulation-based optimization approach to obtain virtual nesting controls. Boyd and Kal-
lesen (2004) discuss the impact of consumer purchase behavior on revenue management practice, distinguishing between
two types of demand: yieldable, where demand is class-specific, and priceable, where demand is price-sensitive and not
class-specific.



850 D. Zhang, W.L. Cooper / European Journal of Operational Research 197 (2009) 848–861
McFadden (2000) reviews the economics literature dealing with models and estimation for consumer choice in travel.
Perhaps the most widely used choice models in practice are discrete-choice models (see, e.g., Ben-Akiva and Lerman,
1985). Train (2003) summarizes recent advances in discrete-choice theory and its applications, and discusses simulation-
based methods to estimate choice probabilities for several discrete-choice models. Utility maximization is frequently used
as a basis for deriving customer choice probabilities. Mahajan and van Ryzin (2001) point out that a number of choice
models can be viewed as special cases of the utility maximization model.

Several recent works also focus on describing or fitting particular choice models in the revenue management context.
Carrier (2003) considers how to model passenger preference on flight schedule, and reports results from an extensive sim-
ulation study. Algers and Beser (2001) describe how to estimate customer choice probabilities for flights and fare classes
using revealed preference and stated preference data. Andersson (1998) reports on a study of passenger choice in the con-
text of seat inventory control. Talluri and van Ryzin (2004a) use a maximum likelihood method to estimate multinomial
logit choice probabilities for fare classes on a single flight.

1.2. Overview

We pose the joint pricing problem for multiple substitutable flights between the same origin and destination as a Markov
decision process (MDP). The MDP has multi-dimensional state and action spaces, and therefore suffers from the well-
known curse of dimensionality. Since the problem is intractable, we develop and analyze a variety of bounds and heuristics.
We begin by formulating three related problems, each based upon some notion of pooling. In addition to yielding bounds
on the value function of the original problem, these ‘‘pooled problems” suggest various baseline pricing heuristics for the
original problem. Among these are single-price policies that, for each time period, quote the same price for all open flights
(the price is, however, updated as time progresses).

We also derive separable upper and lower bounds for the value function of the original problem. These separable
bounds are based upon solutions of several corresponding one-dimensional MDPs. The bounds and the associated one-
dimensional problems suggest two other families of heuristics, which we term value approximation and policy approxima-
tion. These heuristics have the advantage that they remain computationally tractable, even for very large problems with
many flights.

Our numerical studies show that the value- and policy-approximation heuristics appear to work well, and to perform
better than the pooling-based heuristics, especially when there is asymmetry among the flights in terms of demand load
and customer preferences. Several other insights also emerge from the study. For instance, the results show that the revenue
loss from instituting a single-price policy can be quite significant, even when the best possible single-price policy is used.
This shortcoming of single-price policies underscores the importance of using sophisticated policies that allow different
prices for different flights. Moreover, this observation potentially has relevance beyond airline revenue management. In
fashion retailing, as described in Bitran et al. (1998), it may be required that products at different physical locations be
priced identically. Our study indicates that such a requirement (typically made to allow simpler centralized pricing control
or to protect against loss of customer good will) may result in a significant loss in revenue.

We also examine via numerical experiments policies that change prices only at pre-specified time points. The analysis
reveals that for practically implementable choices of such time points, the revenue loss from these policies in comparison
to an optimal policy is small. The main insight here is that much of the benefit from using sophisticated dynamic pricing
policies can be obtained even if the airline does not exercise complete real-time control of prices. This observation has prac-
tical significance, since airlines may want (or be able) to change prices only at certain pre-specified times, such as after daily
or semi-daily database updates.

Before proceeding, we compare this paper to Zhang and Cooper (2005), hereafter ZC, which considers a seat availability
problem with multiple flights between the same origin and destination in which customers choose among the open flights.
For some comments comparing pricing control and availability control, see pp. 176–177 of Talluri and van Ryzin (2004b),
where it is argued that pricing, when possible, is the better option. ZC assumes that customers belong to different classes

that arrive sequentially in distinct periods, and that the order of the classes is pre-determined. The fare for each class is the
same on all the flights. The decisions involve the number of seats to open on each flight in each period. The problem in the
present paper is related to that in ZC, but differs in the following aspects. First, the present paper considers pricing deci-
sions rather than availability decisions, and prices for different flights can be different in the same period. Second, the pres-
ent paper assumes that there is at most one arrival in each period as opposed to the sequential ‘‘block-demand” setup.
Third, the present paper does not assume a pre-determined order of arrivals.

The methodological approach in the present work is also related to that in ZC. Both papers consider solution proce-
dures that bound value functions of high-dimensional MDPs with sums of value functions of one-dimensional MDPs,
and both consider value-approximation heuristics. However, to apply the bounds and value-approximation procedures
one must identify and exploit the structure of the specific problem. Hence, the particulars of the methods are different
in the two papers. Moreover, the increased complexity of the pricing problem expands the scope of methods one might
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use. For instance, policy approximation does not have a counterpart in ZC, and questions regarding the frequency of price
changes are not easily incorporated into the block-demand setup of our earlier work. In addition, the added complexity of
the pricing problem leads us to consider three different pooling procedures in this paper, while only one form is considered
in ZC.

To summarize, our main contributions are (1) formulation of the pricing problem for multiple flights with customer
choice among the flights, (2) development of bounds for the value function of the MDP, (3) proposal of heuristic
approaches to the problem, and (4) numerical testing that provides managerial insights and shows the proposed
approaches to be potentially viable. The remainder of the paper is organized as follows. Section 2 reviews the single-flight
case. Section 3 formulates the multi-flight problem. Section 4 considers various pooling models. Section 5 develops the sep-
arable bounds. Section 6 introduces the value- and policy-approximation heuristics. Section 7 reports numerical results.
Section 8 provides a brief summary. Proofs are in the Appendix.
2. Preliminaries: pricing a single flight

In this section, we formulate a single-flight pricing problem as an MDP with one-dimensional state and action spaces.
The model, which is a discrete-time analog of that in Zhao and Zheng (2000), is a building block for the multiple-flight
case, and its solutions are, in part, the basis for heuristics we develop for the multi-flight case.

Consider a single-leg flight with capacity q. The booking horizon is divided into s discrete-time periods. The earliest
period is period s, and the last period is period 1. In each period t, independent of everything else, there is one customer
arrival with probability kt, and no customer arrival with probability 1� kt. In any time period, there is a single price in
effect. The set of allowable prices is denoted by P ¼ fq0; q1; . . . ; qkg with q0 > q1 > � � � > qk. In period t, given a price
r 2 P, an incoming customer buys a ticket with purchase probability P tðrÞ and makes no purchase with probability
1� P tðrÞ. To model situations where the flight is closed or capacity is depleted, we assume P tðq0Þ ¼ 0 for all t. The price
q0 is often called null price in the literature. Throughout, we do not consider overbooking. The objective is to maximize
total expected revenue from bookings subject to the capacity constraint.

To formulate the MDP, let the state x 2 f0; 1; . . . ; qg be the number of unsold seats at the beginning of a period. Given
state x at time t, let wtðxÞ be the maximum expected revenue over time periods t; . . . ; 1. Let PðxÞ ¼ P if x > 0, and
PðxÞ ¼ fq0g otherwise. For any function uð�Þ of a single variable define DuðxÞ ¼ uðxÞ � uðx� 1Þ. For each t and x, the opti-
mality equation is
wtðxÞ ¼ max
r2PðxÞ

fktP tðrÞ½r þ wt�1ðx� 1Þ� þ ½1� ktP tðrÞ�wt�1ðxÞg ¼ max
r2PðxÞ

ktP tðrÞ½r � Dwt�1ðxÞ� þ wt�1ðxÞ: ð1Þ
We use the convention wtð�1Þ ¼ 0. The boundary conditions are w0ðxÞ ¼ 0 for all x. A policy that specifies a maximizing
action r�t ðxÞ in (1) for each x and t is optimal. The optimal price r�t ðxÞ given by an optimal policy satisfies
r�t ðxÞP Dwt�1ðxÞ; ð2Þ
whenever ktP tðr�t ðxÞÞ > 0. Inequality (2) says that, given state x, an optimal price in period t should be at least the marginal
value of the xth remaining seat.

An important property of the single-flight model is that DwtðxÞ 6 Dwtðx� 1Þ, which can be proved by induction. Using
this fact, it can be shown that there is an optimal policy fr�t ðxÞg such that for all t, we have r�t ðx0Þ 6 r�t ðxÞ if x 6 x0. In words,
in any given time period, higher remaining inventory implies a lower optimal price. Hence, there is a threshold-type optimal
policy; that is, for each fixed t, there exists a set of thresholds fIjðtÞ : j ¼ 0; 1; . . . ; kg with 0 ¼ I0ðtÞ 6 I1ðtÞ 6 � � � 6
IkðtÞ ¼ q, such that the price qi is optimal if Ij�1 < x 6 Ij for j ¼ 1; . . . ; k. The price must be q0 when x ¼ 0.
3. Model formulation

In this section we formulate the multi-flight pricing problem that is the main focus of this paper. There are n flights
between a single origin–destination pair. The booking horizon is divided into s discrete-time periods, and time is counted
backwards. To simplify notation, we reserve the symbols i and t for flights and times, respectively, where i 2 f1; . . . ; ng and
t 2 f1; . . . ; sg. The capacity of flight i is ci. Let c ¼ ðc1; . . . ; cnÞ. Customer arrivals are independent across time periods. In
period t, there is one customer arrival with probability kt and no customer arrival with probability 1� kt. The prices of the
flights are denoted by a vector r ¼ ðr1; . . . ; rnÞ, where ri is the price for flight i. The allowable prices for flight i are in the set
Ri ¼ fq0; qi;1; qi;2; . . . ; qi;ki

g, where ki is a constant for each i and q0 > qi;1 > qi;2 > � � � > qi;ki
. We have added a null price q0

to the price set to model cases when flight i is not offered. It is without loss of generality to take q0 to be the same on all the
flights. Let R ¼ R1 � � � � �Rn.

Customers choose among the flights or purchase nothing. The choice of a particular customer depends on the price vec-
tor r. Given a price vector r in period t, and given that a customer arrives in period t, the probability that the customer
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purchases a ticket on flight i is P i
tðrÞ. We use P 0

t ðrÞ to denote the probability that an arriving customer does not make a
purchase. For each t and r, the choice probabilities satisfy (i) 8i, if ri ¼ q0, then P i

tðrÞ ¼ 0; otherwise, P i
tðrÞP 0, and (ii)Pn

i¼0P i
tðrÞ ¼ 1. In Section 7, we describe choice models that satisfy the two conditions.

To formulate the MDP, let the state s ¼ ðs1; . . . ; snÞ be the vector whose i-th entry, si 2 f0; 1; . . . ; cig, is the number of
unsold seats on flight i. Let RðsÞ ¼ fr : ri 2 Ri if si > 0 and ri ¼ q0 if si ¼ 0 8ig be the set of allowable price vectors given
state s. Note that when there is no remaining capacity on flight i, the only allowable price is q0; i.e., the flight is closed. For
each i let �i be the n-vector with the ith component 1 and zeros everywhere else, and for any function vð�Þ of n variables
define DivðsÞ ¼ vðsÞ � vðs� �iÞ.

Let vtðsÞ be the maximum expected revenue from periods t; . . . ; 1 given the state at time t is s. For each t and s, the opti-
mality equation for the MDP is
vtðsÞ ¼ max
r2RðsÞ

kt

Xn

i¼1

P i
tðrÞ½ri þ vt�1ðs� �iÞ� þ ½1� kt þ ktP 0

t ðrÞ�vt�1ðsÞ
( )

¼ max
r2RðsÞ

kt

Xn

i¼1

P i
tðrÞ½ri � Divt�1ðsÞ�

( )
þ vt�1ðsÞ: ð3Þ
The boundary conditions are v0ðsÞ ¼ 0 for all s, and we set vtðsÞ ¼ 0 if si ¼ �1 for some i.
The MDP associated with (3) has n-dimensional state and action spaces. Although the backward induction algorithm

can be applied to (3) to obtain an optimal policy, the computational effort can be overwhelming. In principle, an optimal
policy specifies a vector of prices for each possible state s in each period. Even if we could compute such a policy, storage
and implementation of the policy would be, for practical purposes, impossible, except when n is very small. For a 10-flight
problem (e.g., like that mentioned in the Introduction) with 100 seats on each flight, there are 1020 states. If there are 1000
periods, then to store an optimal policy, we need to store a 1� 10 price vector for each state in each period – so 1024 num-
bers need to be stored. Structural properties of optimal policies could potentially decrease the amount of information to be
stored; however, it is not hard to find examples for which even the natural analog of property (2) does not hold. That is, for
an optimal policy fr̂tðsÞg, it is not necessarily the case that r̂i

tðsÞP Divt�1ðsÞ for all i.
It can be shown that the value function is increasing in s and t. Under additional assumptions on choice probabilities, we

are able to obtain some structural properties. Unfortunately, these properties together are not enough to allow practical
computation and storage of an optimal policy.

We say that P ¼ fðP 1ðrÞ; . . . ; P nðrÞÞ : r 2 Rg satisfies Condition S (S is for substitutes) if for all k–j and
zj > rj; P kðrÞ 6 P kðr�j; zjÞ, where ðr�j; zjÞ is the vector r with the jth component replaced by zj. The condition says that when
the price of one flight increases, the probability that a customer chooses other flights increases. Condition S is related to the
concept of positive cross price elasticity, which is often used to characterize substitutable products in the economics liter-
ature. For choice probabilities that satisfy Condition S, an analog of property (2) holds.

Proposition 1. Fix state s and time t. Suppose P t satisfies Condition S and r̂tðsÞ is a maximizing action in (3). If ktP i
tðr̂tðsÞÞ > 0,

then Divt�1ðsÞ 6 r̂i
tðsÞ 8i.
Proposition 2. Suppose sequences of choice probabilities fP tg and fRtg satisfy Condition S and P i
tðrÞP Ri

tðrÞ 8i; t; r. Let vP
t ð�Þ

and vR
t ð�Þ be the value functions associated with fP tg and fRtg respectively. Then vP

t ðsÞP vR
t ðsÞ 8s; t.
4. Pooling

The MDP of the previous section has n-dimensional state and action spaces, making it intractable. In this section, we
consider pooling models with one-dimensional action space, state space, or both. For models with price pooling, we assume
the set of allowable prices is the same for all flights. We denote this set by R0, so Ri ¼ R0 for all i.

We first consider a model where at each time point a common price is quoted on all the flights with positive remaining
capacity. To specify the price pooling model, let R̂ðsÞ ¼ fr 2 RðsÞ : ri ¼ rj 2 R0 8i; j with si; sj > 0g,

The value function vPP
t ðsÞ of the price pooling model satisfies (3) with the action set RðsÞ in state s replaced by R̂ðsÞ. We

refer to the associated pricing policy as the price pooling (PP) heuristic. Although the MDP has a one-dimensional action
space, it still has an n-dimensional state space, and hence the price pooling model is intractable for moderate n.

Next, we consider an MDP with a one-dimensional state space and n-dimensional action space, In the inventory pooling

model the capacities of the n flights are regarded as perfect substitutes, and are assumed to form the capacity of a single

flight. Prices on different flights in the original problem are viewed as prices for different classes on the pooled flight, and
choice of flights in the original problem is re-cast as choice of fare classes in the pooled problem. The pooled model involves
a single flight with capacity cp ¼

Pn
i¼1ci and n fare classes. (Throughout, a superscript ‘‘p” indicates a scalar obtained by
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summing entries of a vector.) Customers choose among the n fare classes. The fare of class i is ri 2 Ri. Given price vector r

in period t, a customer chooses class i with probability P i
tðrÞ. Let vIP

t ðxÞ be the value function and leteRðxÞ ¼ fr : ri 2 Ri if x > 0 and ri ¼ q0 if x ¼ 0 8ig be the set of allowable price vectors when the state is x. The optimal-
ity equations are
vIP
t ðxÞ ¼ max

r2 ~RðxÞ
kt

Xn

i¼1

P i
tðrÞ½ri � DvIP

t�1ðxÞ�
( )

þ vIP
t�1ðxÞ 8t; x ð4Þ
with boundary conditions vIP
0 ðxÞ ¼ 0 8x.

The policy from the inventory pooling model can be used to control the multi-flight problem with customer choice. In
particular, suppose fp̂tðxÞg is an optimal pricing policy for the inventory pooling model. The inventory pooling (IP) heu-
ristic for the multiple-flight problem is the policy that in state s at time t sets the price on flight i to be p̂i

tðspÞ if si > 0 and q0

if si ¼ 0.
The computations of the inventory pooling problem are potentially quite demanding, because of the multi-dimensional

action space eRðxÞ. Without taking advantage of any structural properties, the maximization on the right-hand side of (4)
requires evaluating j eRðxÞ j possibilities. In the following two paragraphs, we briefly outline how the analysis of Talluri and
van Ryzin (2004a) can be directly adapted to solve this problem. (Talluri and van Ryzin (2004a) assume that the price of
each fare class is fixed and the decision is about which fare classes to open and which to close. Here the decision involves
what prices to charge for the different fare classes; the price for, say, class-i can be assigned any value in Ri, including the
null price.)

Given a price vector r, let W tðrÞ ¼ kt
Pn

i¼1P i
tðrÞri and CtðrÞ ¼ kt

Pn
i¼1P i

tðrÞ. Here, W tðrÞ and CtðrÞ are the expected revenue
in period t and the expected number of seats purchased in period t when price r is used in period t. We can now rewrite (4)
as
vIP
t ðxÞ ¼ max

r2 ~RðxÞ
fW tðrÞ � DvIP

t�1ðxÞCtðrÞg þ vIP
t�1ðxÞ: ð5Þ
For fixed t, a price vector r0 is said to be inefficient if there exist probabilities Qð�Þ on R with
P

r2RQðrÞ ¼ 1 such that
Ctðr0ÞP

P
r2RQðrÞCtðrÞ and W tðr0Þ <

P
r2RQðrÞW tðrÞ. Otherwise, r0 is efficient. It can be shown that an inefficient price

vector is never optimal in (5).
For fixed t, let N #R be the set of efficient price vectors. Suppose N ¼ frk : k ¼ 1; . . . ;mg. Then for r; r0 2 N , if

CtðrÞ 6 Ctðr0Þ, then W tðrÞ 6 W tðr0Þ. Therefore, we can assume without loss of generality that Ctðr1Þ 6 � � � 6 CtðrmÞ and
W tðr1Þ 6 � � � 6 W tðrmÞ. It can be shown that a maximizing action in (4) is to choose a price vector rk�ðxÞ 2 N , where the opti-
mal index k�ðxÞ is increasing in x for fixed t. This simplifies computations for the pooled problem. However, the determi-
nation of the set of efficient price vectors N could itself be a formidable task when there are many fare classes (or
equivalently, many flights in the original problem). For a 10-class problem with five price points for each class, we may
need to evaluate 510 � 107 price vectors to determine N.

It is also possible to aggregate both state and action spaces by adding up the capacity of all the flights to form a single
flight and assuming that a single price is quoted in each period. We call this the inventory and price pooling model. The
model is a one-flight pricing model as discussed in Section 2. For f 2 R0, let Qtðf Þ ¼

Pn
i¼1P i

tð~f Þ, where ~f is the n-vector
with f in each entry. Let vIPP

t ð�Þ denote the value function, which is associated with capacity cp, arrival probabilities fktg,
purchase probabilities fQtð�Þg (see Section 2). As discussed in Section 2, such a model is easy to solve. The resulting policy
is a reasonable choice for building a simple heuristic method for the multi-flight problem. In particular, suppose ff �t ðxÞg is
an optimal policy for the inventory and price pooling model. For each given time t and state s, let rtðsÞ be such that
ri

tðsÞ ¼ f �t ðspÞ if si > 0 and rtðsÞ ¼ q0 if si ¼ 0. We call frtðsÞg the inventory and price pooling (IPP) heuristic.
The following summarizes the relationships among the value functions we have encountered.

Proposition 3. Suppose Ri ¼ R0 8i. Then vPP
t ðsÞ 6 vtðsÞ 6 vIP

t ðspÞ and vIPP
t ðspÞ 6 vIP

t ðspÞ 8s; t.
5. Separable bounds

In this section, we provide separable upper and lower bounds for vtðsÞ. The bounds are composed of value functions of
several one-dimensional problems as described in Section 2. These bounds provide ingredients for computational
approaches that take advantage of the relatively simple and nicely-structured solutions of one-dimensional problems.

For all i and t, let P i
tð�Þ and P i

tð�Þ be functions from Ri to ½0; 1� that satisfy P i
tðriÞ 6 P i

tðrÞ 6 P i
tðriÞ 8r. In Section 7, we

explain how to determine such P i
tð�Þ and P i

tð�Þ in certain situations. Our approach in the remainder of the present section
is to use one-dimensional MDPs to generate lower [resp., upper] bounds for vtðsÞ. To this end, consider n single flight (one-
dimensional as in Section 2) problems indexed by i. Suppose the ith problem has capacity ci, arrival probabilities fktg, and



854 D. Zhang, W.L. Cooper / European Journal of Operational Research 197 (2009) 848–861
purchase probabilities fP i
tðriÞg [resp., fP i

tðriÞg], and denote the value functions vi
tð�Þ [resp., �vi

tð�Þ]. The argument of vi
tð�Þ

[resp., �vi
tð�Þ] is a scalar. We have
vi
tðxÞ ¼ max

q2RiðxÞ
fktP i

tðqÞ½q� Dvi
t�1ðxÞ�g þ vi

t�1ðxÞ 8t; x; ð6Þ

�vi
tðxÞ ¼ max

q2RiðxÞ
fktP i

tðqÞ½q� D�vi
t�1ðxÞ�g þ �vi

t�1ðxÞ 8t; x; ð7Þ
and vi
0ðxÞ ¼ 0 and �vi

0ðxÞ ¼ 0.
Let fri

tðxÞg be an optimal policy for the one-dimensional problem associated with vi
tð�Þ for each i. Let

rtðsÞ ¼ ðr1
t ðs1Þ; . . . ; rn

t ðsnÞÞ, and let p be the policy that specifies action rtðsÞ for the problem associated with vtðsÞ when
the state at time t is s. Let vp

t ðsÞ be the total expected revenue for periods t; . . . ; 1 under policy p when the state is s at time
t. We have the following proposition.

Proposition 4.
Pn

i¼1vi
tðsiÞ 6 vp

t ðsÞ 6 vtðsÞ 6
Pn

i¼1�v
i
tðsiÞ 8s; t.
For a given s, the relationship between the separable upper bound
Pn

i¼1�v
i
tðsiÞ and the inventory pooling bound vIP

t ðspÞ
depends upon problem specifics. When there is no customer choice among flights (i.e., P i

tðrÞ only depends on ri for all i), the
separable bounds are tight. On the other hand, if customers do not have preference on the flights but are shopping for price
(e.g., P i

tðrÞ ¼ 1 if i ¼ minfj : j 2 arg minkrkg and ri–q0, and P i
tðrÞ ¼ 0 otherwise), then vtðsÞ ¼ vIP

t ðspÞ.
The separable upper [resp., lower] bound is composed of the value functions of n single-flight problems, each with one-

dimensional state and action spaces. As discussed in Section 2, the optimal policy of a single-flight problem is of threshold-
type. Therefore, only a few numbers need to be stored for each period to implement p. As we will see in Section 6, certain
other heuristic policies (based upon the separable bounds) for the multi-flight problem inherit a similar structure.

6. Value and policy approximation

Motivated by the analysis of the previous section, we next discuss various computationally feasible heuristic approaches
for the multi-dimensional pricing problem of Section 3.

Let b 2 ½0; 1�. In value approximation, we approximate the value function vtðsÞ and choice probabilities fPi
tðrÞg by,

respectively
~vtðsÞ ¼
Xn

i¼1

½b�vi
tðsiÞ þ ð1� bÞvi

tðsiÞ� and ð8Þ

eP i
tðriÞ ¼ bP i

tðriÞ þ ð1� bÞP i
tðriÞ 8i: ð9Þ
From (8), it follows that Di~vtðsÞ ¼ ~vtðsÞ � ~vtðs� �iÞ ¼ bD�vi
tðsiÞ þ ½1� b�Dvi

tðsiÞ for all i. Hence, the approximate marginal
value of a seat on flight i is a weighted sum of the upper bound marginal value D�vi

tðsiÞ and lower bound marginal value
Dvi

tðsiÞ. An action is determined in state s at time t by solving
max
r2RðsÞ

kt

Xn

i¼1

eP i
tðriÞ½ri � Di~vt�1ðsÞ�

( )
¼
Xn

i¼1

max
ri2RiðsiÞ

fkt
eP i

tðriÞ½ri � Di~vt�1ðsÞ�g: ð10Þ
The maximization problem in (10) is motivated by the dynamic programming recursion (3).
It follows from the discussion at the end of Sections 2 and 5 that the policy on flight i as determined by solving (10) is of

threshold type for each i. That is, there exists a set of thresholds fðeI i
0ðtÞ; . . . ;eI i

ki
ðtÞÞg such that if the state vector is s at time

t, the price on flight i is qj 2 Ri if eI i
j�1ðtÞ < si

6 eI i
jðtÞ. Therefore, the policy on flight i in period t can be characterized by

ki ¼ jRij � 1 numbers (thresholds). Note that eI i
0ðtÞ ¼ 0 for all i and t. Consequently, to implement the policy from (10), the

data storage requirements are quite manageable. For an n-flight problem, we need only store s
Pn

i¼1ki scalars (the thresh-
olds) instead of s

Qn
i¼1ðci þ 1Þ n-dimensional price vectors (the actions themselves) if no such structure exists.

The approach above is similar to the roll-out policies described in, e.g., Bertsekas and Tsitsiklis (1996). Applied to our
context, a roll-out policy would select an action for state s at time t by maximizing the right side of (3), but with vt�1ð�Þ
replaced by some approximation. In our approach, we also approximate the choice probabilities as in (9) to render the
maximization tractable.

Similar to value approximation, we can obtain heuristics by using the optimal policies associated with the upper or the
lower bound. By Proposition 4, the expected revenue from the policy p is at least as large as the lower bound. A potentially
better heuristic can be obtained by ‘‘mixing” the policies of the upper and the lower bounds. To this end, let
ðI i

0ðtÞ; . . . ; I i
ki
ðtÞÞ and ðI i

0ðtÞ; . . . ; I i
ki
ðtÞÞ be the thresholds in period t for �vi

tð�Þ and vi
tð�Þ, respectively. Given 0 6 b 6 1, a

threshold-type policy for flight i in period t can be determined by thresholds
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ðbbI i
0ðtÞ þ ð1� bÞI i

0ðtÞc; . . . ; bbI i
ki
ðtÞ þ ð1� bÞI i

ki
ðtÞcÞ; ð11Þ
where b�c denotes the integer part of a nonnegative real number.
The quality of the above methods depends on b. To find a good b, we use a search that varies b, determines the cor-

responding policies, evaluates the policies via simulation, and keeps the best one. The method is feasible since the simula-
tions can be done quickly off-line (before the booking horizon), even for large problems. Below, we summarize the
approach for value approximation (the procedure is essentially that described in Section 7.2 of Zhang and Cooper (2005)).

1. Initialize p� and set v� ¼ 0.
2. Fix 0 6 b 6 �b 6 1 and d > 0. For b ¼ b to �b with step size d do the following.
(a) Calculate ~vtð�Þ and eP i
tð�Þ using (8) and (9), and plug the resulting values into (10) to obtain a corresponding policy pb.
b
(b) Simulate the policy p for l replications and record the average total revenue from all the flights as v̂. Then, v̂ is an

estimator for vpb

s ðcÞ.
(c) If v̂ > v�, then v� ¼ v̂ and p� ¼ pb.

The policy p� is the value-approximation policy. For policy approximation, replace step 2(a) by:
2(a0) For t ¼ 1; . . . ; s, calculate thresholds using (11), and call the corresponding policy pb.

7. Numerical experiments

In this section we describe our numerical study. To show the tightness of the bounds and the effectiveness of the heu-
ristics, we test them on examples with two flights, and compare the simulated values with exact MDP values. We also con-
sider examples with six and 12 flights to examine how the methods perform on relatively large problems. The price set is
{$150,$200, $250, $300,q0} for each flight in all examples, where q0 is the null price. Each flight has 80 seats unless noted
otherwise. PA and VA are policy approximation and value approximation as discussed in Section 6. In the simulation step,
we use b ¼ 0; �b ¼ 1; d ¼ 0:1, and l ¼ 100. Because of the computational challenges mentioned in Section 4, we report
results for IP only in the two- and six-flight examples and for PP only in the two-flight examples. In all tables, the values
of MDP, LB, UB, PUB, and PP are computed by the backward induction algorithm for dynamic programs. Here, LB and
UB are the separable lower and upper bounds, and PUB is the upper bound from inventory pooling. The expected revenue
for each heuristic was estimated by an average over 5000 simulation runs for two-flight problems, and an average over 1000
simulation runs for other problems.

We used the following choice model. A customer arriving in period t assigns random utility vector Ut ¼ ðU 1
t ; . . . ;U n

t Þ to
the n flights, where Ut is independent of everything else in the model. We suppress the t in the remainder of this section. For
simplicity and to eliminate the need for ‘‘tie-breaking” in the choice process, we assume the distribution of U is such that
P ðUi � ri–U j � rjÞ ¼ 1. The no-purchase utility is normalized to 0. Given price vector r, the consumer surplus for a cus-
tomer is Ui � ri if the customer chooses flight i. We assume that customers are utility maximizers; that is, they will always
choose an option with the highest consumer surplus. In period t, given there is an arrival and the price vector is r, the cus-
tomer chooses flight i with probability
P i
tðrÞ ¼ P ðUi � ri > ðUj � rjÞþ for all j : j–iÞ: ð12Þ
In the above, we use the notation ðaÞþ ¼ maxfa; 0g. Mahajan and van Ryzin (2001) explain how many well-known choice
models can be captured within this setup.

To apply the results of Section 5, let
P i
tðriÞ ¼ P ðUi � ri > 0Þ; ð13Þ

P i
tðriÞ ¼ P ðUi � ri > ðUj � qkj

Þþ for all j : j–iÞ; ð14Þ
where qkj
is the lowest price possible on flight j. It follows that P i

tðriÞ 6 P i
tðrÞ 6 P i

tðriÞ, and hence we can apply Proposition 4
to bound the value function of the MDP. Also, note that the choice probabilities in (12) satisfy Condition S.

We used simulation to estimate P i
tðrÞ and P i

tðrÞ in (12) and (14). Therefore, the values of MDP, LB, PUB, and PP may
inherit errors from the simulation. We used two million samples of the utility vector U to ensure that the error is small. We
used exact values of P i

tðriÞ in (13), which we calculated directly from the marginal (one-dimensional) utility distributions.

7.1. Two-flight examples

In all two-flight examples, there are 1000 periods. We tested sets of examples with three different time-homogeneous
arrival probabilities kt = 0.3, 0.4, and 0.5. In all examples, the utility vectors are Normally distributed, but with negative
values truncated to zero.



Table 1
Percentage difference from MDP value for two-flight examples where utility distribution is (truncated) bivariate Normal with mean (200,200), standard
deviation (100,100), and correlation coefficient as specified in Correlation row

Arrival rate

0.3 0.4 0.5

Correlation 0.8 0 �0.8 0.8 0 �0.8 0.8 0 �0.8

MDP 33687.82 38747.57 40888.95 39249.94 42788.98 44243.12 42135.70 46015.50 47062.14

LB �22.82% �15.58% �5.91% �27.99% �14.45% �3.74% �27.73% �13.55% �2.73%
UB 21.61% 5.73% 0.19% 12.81% 3.48% 0.08% 11.73% 2.31% 0.03%
PUB 0.34% 0.53% 0.49% 0.33% 0.32% 0.38% 0.26% 0.41% 0.64%
PP �0.28% �0.73% �0.94% �0.21% �0.76% �0.95% �0.22% �0.57% �0.33%
IPP �0.52% �1.05% �1.42% �0.46% �1.16% �1.43% �0.39% �0.92% �0.66%
IP �0.52% �1.15% �2.40% �0.46% �4.86% �4.15% �0.41% �0.92% �0.74%
PA �1.20% �0.44% �0.01% �1.79% �0.12% �0.02% �2.02% �0.12% �0.02%
VA �0.72% �0.14% �0.01% �0.30% �0.10% �0.08% �0.42% �0.04% �0.02%
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Table 1 reports results for cases where the utility distributions have mean (200, 200) and standard deviation (100, 100).
The table shows MDP values, and for compactness expresses all other quantities in terms of percentage difference from the
MDP value. Negative numbers represent quantities that are lower than the MDP value. Similar conventions are used in the
other tables. For each arrival rate, we vary the correlation coefficient of the utility vector among 0.8, 0, and �0.8. Since the
upper bound purchase probabilities depend only on marginal distributions, the UB values are the same for the same arrival
rate. All the other expected revenue values are decreasing in correlation coefficient. This may be attributed to the fact that
the choice probabilities are roughly decreasing in the correlation coefficient. The ordering on MDP values appears to reflect
the results of Proposition 2, although we have no formal proof that its assumptions hold. On an intuitive level, if a cus-
tomer assigns a low utility to one flight (and hence prefers not to purchase a ticket for it), he is likely to assign a high utility
to the other (and therefore will purchase a ticket on the other flight), when the utility values are highly negatively corre-
lated. On the other hand, when the utility values are highly positively correlated, if a customer assigns a low utility to one
flight, he is likely to assign a low utility to the other also. Overall, in Table 1 all five heuristics perform well, yielding
expected revenues within 2% of optimal in most cases.

Next, we report on cases where the utility distribution is not symmetric. Here, customers (as a whole) have a strong
preference for one of the flights over the other. Table 2 reports results for cases where the utility distributions have mean
(200,180) and standard deviation (100,80). Table 3 reports results for cases with mean (200, 160) and standard deviation
(100,60). A comparison of Tables 2 and 3 shows that PA and VA perform better than IPP and IP in most situations, with
the performance gap increasing in asymmetry. The IPP policy performs poorly in almost all cases, with a revenue gap rang-
ing from 2% to 19%. Interestingly, although the inventory pooling bound (PUB) is tighter than separable upper bounds in
most cases, the policy implied by the bound (IP) does not perform very well as customer valuations become more asym-
metric. The PP values are up to 10% below the MDP values. This shows that requiring the price to be the same for all
flights can have a major impact on revenue, even if the best possible single-price policy is used.

Table 4 shows results for symmetric utility distributions and asymmetric capacity. The capacities of the two flights are
100 and 60, and the utility distributions are the same as those for Table 1. The results show that PA and VA perform better
Table 2
Percentage difference from MDP value for two-flight examples where utility distribution is (truncated) bivariate Normal with mean (200,180), standard
deviation (100,80), and correlation coefficient as specified in Correlation row

Arrival rate

0.3 0.4 0.5

Correlation 0.8 0 �0.8 0.8 0 �0.8 0.8 0 �0.8

MDP 31826.14 36248.07 38097.73 36642.62 40073.83 41528.48 39339.74 43071.88 43852.99

LB �18.79% �13.89% �4.69% �22.44% �11.85% �3.63% �25.71% �12.92% �1.85%
UB 19.98% 5.35% 0.23% 13.42% 3.71% 0.08% 11.50% 1.84% 0.02%
PUB 1.55% 0.53% 1.42% 0.87% 1.61% 0.82% 2.67% 0.56% 0.77%
PP �0.83% �1.76% �0.83% �1.99% �0.02% �1.20% �3.45% �6.11% �5.93%
IPP �4.77% �7.52% �6.58% �5.72% �6.55% �7.91% �4.96% �8.74% �9.35%
IP �3.54% �1.46% �3.76% �1.91% �3.95% �1.96% �4.28% �0.95% �1.12%
PA �0.69% �0.18% �0.03% �1.97% �0.13% �0.02% �1.13% �0.04% �0.01%
VA �0.54% �0.12% �0.03% �0.31% �0.13% �0.04% �0.37% �0.01% �0.01%



Table 3
Percentage difference from MDP value for two-flight examples where utility distribution is (truncated) bivariate Normal with mean (200,160), standard
deviation (100,60), and correlation coefficient as specified in Correlation row

Arrival rate

0.3 0.4 0.5

Correlation 0.8 0 �0.8 0.8 0 �0.8 0.8 0 �0.8

MDP 30282.96 33854.26 35816.90 34257.42 37562.28 38448.40 37188.34 39675.70 40307.05

LB �28.18% �10.06% �4.71% �28.24% �10.95% �1.83% �26.44% �10.45% �1.08%
UB 18.55% 6.05% 0.23% 12.27% 2.39% 0.03% 8.42% 1.62% 0.03%
PUB 3.16% 1.82% 1.75% 5.11% 2.18% 1.80% 5.78% 2.89% 2.55%
PP �4.57% �5.68% �6.56% �3.89% �6.05% �5.86% �7.59% �9.43% �9.51%
IPP �10.75% �14.66% �16.90% �11.60% �15.19% �17.32% �12.11% �16.61% �18.57%
IP �7.80% �5.89% �3.49% �4.28% �9.34% �13.23% �8.35% �13.61% �14.22%
PA �0.53% �0.13% �0.05% �0.26% �0.12% �0.00% �0.98% �0.01% �0.00%
VA �0.65% �0.13% �0.05% �0.32% �0.04% �0.02% �0.13% �0.02% �0.00%

Table 5
Percentage difference from best upper bound (the minimum of UB and PUB) for six-flight examples

Arrival rate

0.4 0.6

A B C A B C

Best UB 114783.00 121467.90 127691.70 127791.40 139178.00 144000.00

LB �42.16% �38.43% �39.67% �36.34% �36.77% �36.64%
UB 7.70% 10.70% 12.65% – – –
PUB – – – 6.21% 1.96% 0.00%
IPP �18.41% �10.72% �2.74% �17.00% �9.47% �0.02%
IP �13.12% �7.94% �5.42% �8.44% �7.41% �0.18%
PA �5.43% �6.28% �6.18% �2.96% �2.94% �0.01%
VA �3.07% �3.15% �1.93% �2.96% �2.94% �0.01%

The utility distribution for column A [respectively; B, C] is (truncated) multivariate Normal, with mean 200 [200,200] on flights 1–3 and 160 [180,200] on
flights 4–6. The standard deviation is 100 [100,100] for flights 1–3 and 60 [80,100] for flights 4–6. The correlation coefficients are all 0.

Table 4
Percentage difference from MDP value for two-flight examples with asymmetric capacity of (100,60)

Arrival rate

0.3 0.4 0.5

Correlation 0.8 0 �0.8 0.8 0 �0.8 0.8 0 �0.8

MDP 33466.69 37969.07 40213.50 38809.34 42713.48 43854.39 41969.84 45143.60 45710.57

LB �22.38% �15.86% �7.45% �27.42% �15.28% �3.70% �28.94% �13.75% �2.26%
UB 20.48% 6.19% 0.27% 13.03% 2.70% 0.03% 8.92% 1.26% 0.01%
PUB 1.00% 2.59% 2.18% 1.47% 0.49% 1.27% 0.66% 2.35% 3.62%
PP �1.51% �3.06% �3.79% �0.89% �3.73% �3.72% �1.13% �1.61% �0.72%
IPP �2.19% �4.19% �5.95% �1.35% �5.31% �6.12% �1.76% �3.20% �3.13%
IP �2.20% �3.99% �7.48% �1.35% �5.33% �9.75% �1.78% �3.23% �3.35%
PA �1.20% �0.24% �0.02% �1.49% �0.25% �0.07% �1.74% �0.01% �0.05%
VA �0.54% �0.15% �0.02% �0.33% �0.08% �0.03% �0.35% �0.02% �0.01%

The utility distribution is (truncated) bivariate Normal with mean (200,200), standard deviation (100,100), and correlation coefficient as specified in
Correlation row.
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than IPP and IP in all cases. Capacity asymmetry and utility distribution asymmetry apparently share a similar effect on the
pooling heuristics: IP and IPP work better when there is low arrival rate, symmetric capacity, and symmetric utility dis-
tributions. PA and VA, on the other hand, appear to be robust with respect to parameter asymmetries, and work well
in all cases. Also observe that with only capacity asymmetry, the PP value is up to 4% less than the MDP value, a signif-
icant revenue shortfall for many applications.
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7.2. Six- and 12-flight examples

In six-flight examples there are 1500 periods. We tested a series of examples with arrival probabilities 0.4 and 0.6. Table
5 reports the results. In the table, columns A, B, and C correspond to the cases with highly-asymmetric, asymmetric, and
symmetric utility distributions, respectively. The performance of IP and IPP deteriorates as the problems become more
asymmetric, while the effects of asymmetry on PA and VA are less obvious. We are not able to compute MDP values
because the state space is too large, so results are compared with the best upper bound, which is the minimum of the
UB and PUB values. Note that VA appears to do better than PA. This observation also applies to 12-flight examples
described below. For the cases with arrival rate 0.6, both PA and VA give the same policies – those associated with sep-
arable upper bounds. (When we use smaller stepsize, say, d ¼ 0:01, the PA and VA policies differ, and give slightly different
average revenues.)

To confirm our observations from the six-flight examples and to demonstrate the use of the heuristics for large prob-
lems, we consider several 12-flight examples with different arrival rates and utility distributions. The IP and PP heuristics,
PUB, and MDP are not presented because of computational intractability. There are 2000 periods. The arrival probability
in each period is either 0.6 or 0.9. Table 6 reports the results, which are similar to those in the six-flight examples. For the
12-flight examples, PA and VA again appear to perform well. The largest revenue gap is less than 9% from the separable
upper bound. Comparing UB to PUB and MDP in the earlier tables suggests that much of the 9% gap may be explained by
the fact that UB is a somewhat loose bound on MDP. Note that IPP performs poorly in some cases, with a maximum gap
from UB of about 29%. Also, IPP performs worse when the utility distribution is not symmetric.

Tables 5 and 6 show that at the higher arrival rate, the policies PA and VA yield the same estimated expected revenue.
This occurs because in both cases the algorithm described in Section 6 outputs a value of b ¼ 1 (which corresponds to the
policy associated with the separable upper bound) for both PA and VA, in which case the two policies are identical. (For a
common choice of b, PA and VA differ from each other when 0 < b < 1.) If we allow the algorithm to search over a finer
grid of b values by taking (for instance) d ¼ 0:01 rather than d ¼ 0:1, then PA and VA will be different. To get a feel why
b ¼ 1 was chosen for both PA and VA in these problems with many flights and high arrival rate, note that the separable
lower bound in these problems is quite loose (which makes low values of b worse), because it severely underestimates the
choice probabilities for higher price vectors.

7.3. Periodic price changes

The heuristics PA and VA (as well as an optimal policy) prescribe prices for each state in each period. The policies
require changing prices frequently, which is sometimes not desirable in applications. In this section, we consider policies
where prices change only in pre-specified time periods. Bitran and Mondschein (1997) consider periodic pricing policies
for a single type of item in fashion retailing, and show numerically that the revenue loss associated with such a policy
is small, if the update interval is chosen appropriately. Our experiments suggest this is true in our context also.

We report results for two-flight examples with 1000 periods. We tested PA and VA with different price-change frequen-
cies. We count setting the initial prices as one change, and the changes are distributed evenly through the horizon. For
example, 40 changes means that the price is changed once every 25 periods. The prices are fixed between changes, unless
the capacity of a flight is depleted, in which case the price on the flight is set to q0. To clarify, suppose b is fixed and fqtðsÞg
is the policy from VA (or PA). Suppose t0 and t00 are two consecutive price-change times. If the state is s0 at time t0, the price
vector qt0 ðs0Þ is used in periods t0; . . . ; t00 � 1, unless capacity is reached.

Good VA and PA pricing policies with periodic changes are determined by the simulation procedure described in Sec-
tion 6, where in step 2(b), the policy pb associated with a given b is a periodic pricing policy with a fixed price-change fre-
quency. As before, the simulations are done off-line ahead of the selling horizon.
Table 6
Percentage difference from separable upper bound UB for 12-flight examples

Arrival rate

0.6 0.9

A B C A B C

UB 262576.70 286206.70 288000.00 265919.80 288000.00 288000.00

LB �56.23% �51.84% �47.56% �50.34% �41.26% �40.56%
IPP �28.97% �10.62% �0.12% �23.13% �1.17% �0.00%
PA �7.94% �8.49% �0.06% �1.29% �0.48% �0.00%
VA �6.43% �6.17% �0.06% �1.29% �0.48% �0.00%

The utility distribution for column A [respectively; B, C] is (truncated) multivariate normal, with mean 200 [200,200] on flights 1–6 and 160 [180,200] on
flights 7–12. The standard deviation is 100 [100,100] for flights 1–6 and 60 [80,100] for flights 7–12. The correlation coefficients are all 0.



Table 7
The effect of price-change frequency

Arrival rate

0.3 0.4 0.5

# changes PA VA PA VA PA VA

1000 36205.76 36214.08 40007.26 40018.26 43053.31 43066.48

500 �0.01% �0.01% �0.01% �0.01% �0.01% �0.01%
200 �0.05% �0.02% �0.05% �0.05% �0.05% �0.08%
100 �0.09% �0.07% �0.25% �0.02% �0.12% �0.11%
50 �0.23% �0.14% �0.22% �0.11% �0.23% �0.16%
40 �0.30% �0.15% �0.28% �0.17% �0.24% �0.22%
25 �0.44% �0.26% �0.42% �0.25% �0.40% �0.32%
20 �0.38% �0.38% �0.34% �0.35% �0.46% �0.42%
10 �0.70% �0.76% �0.79% �0.91% �0.96% �0.74%
4 �1.58% �1.51% �2.36% �2.15% �2.21% �1.64%
2 �3.02% �2.86% �6.32% �4.24% �4.32% �2.87%
1 �3.41% �3.43% �10.02% �8.71% �3.84% �3.87%

The utility distribution is (truncated) bivariate Normal with mean (200,180), standard deviation (100,80), and correlation coefficient 0.
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Table 7 shows the performance of these policies. The table shows that revenue loss is rather small, even with fairly infre-
quent price changes. If the price is changed more than 10 times, the revenue loss experienced is less than 1%. Note that the
revenue loss is in terms of the best revenue achievable by PA (VA), which is shown to be very close to optimal in Section 7.1
(see also Table 2). It is most important to have more frequent price changes when the demand is moderate ðkt ¼ 0:4Þ. When
demand is low or high, even a fixed-price policy that does not change prices works reasonably well. In general, our exper-
iments suggest that by making less-frequent price changes, an airline may be able to realize nearly all the benefit of the
implementation of sophisticated pricing.

8. Summary

We developed a pricing model for substitutable flights where customers choose among the available flights. To overcome
computational problems posed by the formulation’s multi-dimensional state and action spaces, we considered heuristics
based on pooling ideas. We also derived easily-computable separable bounds for the value function of our model. Policies
motivated by these bounds were shown numerically to be near optimal for a range of problem instances, and to dominate
the policies from pooling in most cases. Our results suggest that pooling heuristics perform well for symmetric problems in
which (a) customers, when viewed as a population, are mostly indifferent in their preferences over flights and (b) the flights
have the same seating capacity. However, the pooling heuristics can perform poorly for asymmetric problems. The
approaches motivated by the separable bounds do not suffer from such shortcomings, and remain implementable for large
problems.
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Appendix. Proofs

Proof of Proposition 1. Fix s and t, and let r̂ ¼ r̂tðsÞ be the maximizing action in (3). Let A ¼ fi : r̂i < Divt�1ðsÞg, and
~r ¼ ð~r1; . . . ;~rnÞ where ~ri ¼ r̂i if i R A and ~ri ¼ q0 otherwise. Denote by ~vtðsÞ the expected revenue when prices are ~r in period
t and an optimal policy is used from t � 1 onward. Then
~vtðsÞ ¼ kt

Xn

i¼1

P i
tð~rÞ½~ri � Divt�1ðsÞ� þ vt�1ðsÞP kt

Xn

i¼1

P i
tðr̂Þ½r̂i � Divt�1ðsÞ� þ vt�1ðsÞ ¼ vtðsÞ: ð15Þ
To see the inequality, note that P i
tð~rÞP Pi

tðr̂Þ for i R A because P t satisfies Condition S, and r̂i < Divt�1ðsÞ for i 2 A. If there
exists an i 2 A with ktP i

tðr̂Þ > 0, then (15) is a strict inequality and hence ~vtðsÞ > vtðsÞ, contradicting the definition of vtðsÞ.
Therefore, no such i can exist. h

Proof of Proposition 2. The proof is by induction on t. The statement in the proposition holds trivially for t ¼ 0 by bound-
ary conditions. Suppose the statement holds for t � 1.
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Let ~vtðsÞ be the value function of an MDP with choice probabilities P t;Rt�1; . . . ;R1. We first show that vP
t ðsÞP ~vtðsÞ, and

then show that ~vtðsÞP vR
t ðsÞ. By the inductive hypothesis, we have
vP
t ðsÞ ¼ max

r2RðsÞ
kt

Xn

i¼1

P i
tðrÞ½ri þ vP

t�1ðs� �iÞ� þ ½1� kt þ ktP 0
t ðrÞ�vP

t�1ðsÞ
( )

P max
r2RðsÞ

kt

Xn

i¼1

P i
tðrÞ½ri þ vR

t�1ðs� �iÞ� þ ½1� kt þ ktP 0
t ðrÞ�vR

t�1ðsÞ
( )

¼ ~vtðsÞ:
For fixed s, let r̂ be an optimal action in period t for the problem associated with vR
t ðsÞ. Then
vR
t ðsÞ ¼ kt

Xn

i¼1

Ri
tðr̂Þ½̂ri � DivR

t�1ðsÞ� þ vR
t�1ðsÞ 6 kt

Xn

i¼1

P i
tðr̂Þ½̂ri � DivR

t�1ðsÞ� þ vR
t�1ðsÞ 6 ~vtðsÞ:
In the above, the first inequality follows from Proposition 1 and the fact that P i
tðr̂ÞP Ri

tðr̂Þ. h

Proof of Proposition 3. It is apparent that vPP
t ðsÞ 6 vtðsÞ and vIPP

t ðspÞ 6 vIP
t ðspÞ. It remains to prove vtðsÞ 6 v IP

t ðspÞ. The
statement is true for t ¼ 0. Assume it holds for t � 1. Fix s ¼ ðs1; . . . ; snÞ and let sp ¼

Pn
i¼1si. By the inductive hypothesis

and the fact that RðsÞ# eRðspÞ, we have
vtðsÞ ¼ max
r2RðsÞ

kt

Xn

i¼1

Pi
tðrÞ½ri þ vt�1ðs� �iÞ� þ ½1� kt þ ktP 0

t ðrÞ�vt�1ðsÞ
( )

6 max
r2 ~RðspÞ

kt

Xn

i¼1

P i
tðrÞ½ri þ vIP

t�1ðsp � 1Þ� þ ½1� kt þ ktP 0
t ðrÞ�vIP

t�1ðspÞ
( )

¼ vIP
t ðspÞ:
This completes the proof. h

Proof of Proposition 4. The second inequality follows from the definition of vtðsÞ. We prove the first and third inequalities
by induction. For t ¼ 0, the inequalities hold. Suppose the first inequality holds for t � 1. Fix s and let r ¼ rtðsÞ. Then
vp
t ðsÞ ¼ kt

Xn

i¼1

P i
tðrÞ½ri

t þ vp
t�1ðs� �iÞ� þ ½1� kt þ ktP 0

t ðrÞ�v
p
t�1ðsÞ

P kt

Xn

i¼1

P i
tðrÞri þ kt

Xn

i¼1

P i
tðrÞ

X
j–i

vj
t�1ðsjÞ þ kt

Xn

i¼1

P i
tðrÞvi

t�1ðsi � 1Þ

þ ½1� kt þ ktP 0
t ðrÞ�

Xn

i¼1

vi
t�1ðsiÞ

¼ kt

Xn

i¼1

P i
tðrÞ½ri � Dvi

t�1ðsiÞ� þ
Xn

i¼1

vi
t�1ðsiÞ ð16Þ

P kt

Xn

i¼1

P i
tðriÞ½ri � Dvi

t�1ðsiÞ� þ
Xn

i¼1

vi
t�1ðsiÞ ð17Þ

¼
Xn

i¼1

vi
tðsiÞ:
The inequality (17) follows from the facts that P i
tðrÞP P i

tðriÞ, and that ri P Dvi
t�1ðsiÞ by (2).

Now we prove the third inequality in the proposition. Arguments like those that give (16) yield
vtðsÞ 6 max
r2RðsÞ

kt

Xn

i¼1

P i
tðrÞ½ri � D�vi

t�1ðsiÞ� þ
Xn

i¼1

�vi
t�1ðsiÞ

( )
: ð18Þ
Let ~r ¼ ð~r1; . . . ;~rnÞ be an action that maximizes the right side of (18). We have
vtðsÞ 6 kt

Xn

i¼1

P i
tð~rÞ½~ri � D�vi

t�1ðsiÞ� þ
Xn

i¼1

�vi
t�1ðsiÞ 6 kt

X
i:~riPD�vi

t�1
ðsiÞ

P i
tð~rÞ½~ri � D�vi

t�1ðsiÞ� þ
Xn

i¼1

�vi
t�1ðsiÞ

6 kt

X
i:~riPD�vi

t�1
ðsiÞ

P i
tð~riÞ½~ri � D�vi

t�1ðsiÞ� þ
Xn

i¼1

�vi
t�1ðsiÞ:
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Let �r ¼ ð�r1; . . . ;�rnÞ where �ri 2 arg maxri2RiðsiÞkt Pi
tðriÞ½ri � D�vi

t�1ðsiÞ�. From the definition of �r and the preceding inequality,
we have
vtðsÞ 6 kt

X
i:~riPD�vi

t�1
ðsiÞ

P i
tð�riÞ½�ri � D�vi

t�1ðsiÞ� þ
Xn

i¼1

�vi
t�1ðsiÞ 6 kt

Xn

i¼1

P i
tð�riÞ½�ri � D�vi

t�1ðsiÞ� þ
Xn

i¼1

�vi
t�1ðsiÞ ¼

Xn

i¼1

�vi
tðsiÞ:
Above, the second inequality follows from property (2) for one-flight problems. h
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